Description: Index shift of a finite sum with a weaker "implicit substitution" hypothesis than fsumshft . The proof demonstrates how this can be derived starting from from fsumshft . (Contributed by NM, 1-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumshftd.1 | |
|
| fsumshftd.2 | |
||
| fsumshftd.3 | |
||
| fsumshftd.4 | |
||
| fsumshftd.5 | |
||
| Assertion | fsumshftd | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumshftd.1 | |
|
| 2 | fsumshftd.2 | |
|
| 3 | fsumshftd.3 | |
|
| 4 | fsumshftd.4 | |
|
| 5 | fsumshftd.5 | |
|
| 6 | csbeq1a | |
|
| 7 | nfcv | |
|
| 8 | nfcsb1v | |
|
| 9 | 6 7 8 | cbvsum | |
| 10 | nfv | |
|
| 11 | 8 | nfel1 | |
| 12 | 10 11 | nfim | |
| 13 | eleq1w | |
|
| 14 | 13 | anbi2d | |
| 15 | 6 | eleq1d | |
| 16 | 14 15 | imbi12d | |
| 17 | 12 16 4 | chvarfv | |
| 18 | csbeq1 | |
|
| 19 | 1 2 3 17 18 | fsumshft | |
| 20 | ovexd | |
|
| 21 | 20 5 | csbied | |
| 22 | 21 | sumeq2sdv | |
| 23 | 19 22 | eqtrd | |
| 24 | 9 23 | eqtrid | |