Step |
Hyp |
Ref |
Expression |
1 |
|
fsumsplit.1 |
|
2 |
|
fsumsplit.2 |
|
3 |
|
fsumsplit.3 |
|
4 |
|
fsumsplit.4 |
|
5 |
|
ssun1 |
|
6 |
5 2
|
sseqtrrid |
|
7 |
6
|
sselda |
|
8 |
7 4
|
syldan |
|
9 |
8
|
ralrimiva |
|
10 |
3
|
olcd |
|
11 |
|
sumss2 |
|
12 |
6 9 10 11
|
syl21anc |
|
13 |
|
ssun2 |
|
14 |
13 2
|
sseqtrrid |
|
15 |
14
|
sselda |
|
16 |
15 4
|
syldan |
|
17 |
16
|
ralrimiva |
|
18 |
|
sumss2 |
|
19 |
14 17 10 18
|
syl21anc |
|
20 |
12 19
|
oveq12d |
|
21 |
|
0cn |
|
22 |
|
ifcl |
|
23 |
4 21 22
|
sylancl |
|
24 |
|
ifcl |
|
25 |
4 21 24
|
sylancl |
|
26 |
3 23 25
|
fsumadd |
|
27 |
2
|
eleq2d |
|
28 |
|
elun |
|
29 |
27 28
|
bitrdi |
|
30 |
29
|
biimpa |
|
31 |
|
iftrue |
|
32 |
31
|
adantl |
|
33 |
|
noel |
|
34 |
1
|
eleq2d |
|
35 |
|
elin |
|
36 |
34 35
|
bitr3di |
|
37 |
33 36
|
mtbii |
|
38 |
|
imnan |
|
39 |
37 38
|
sylibr |
|
40 |
39
|
imp |
|
41 |
40
|
iffalsed |
|
42 |
32 41
|
oveq12d |
|
43 |
8
|
addid1d |
|
44 |
42 43
|
eqtrd |
|
45 |
39
|
con2d |
|
46 |
45
|
imp |
|
47 |
46
|
iffalsed |
|
48 |
|
iftrue |
|
49 |
48
|
adantl |
|
50 |
47 49
|
oveq12d |
|
51 |
16
|
addid2d |
|
52 |
50 51
|
eqtrd |
|
53 |
44 52
|
jaodan |
|
54 |
30 53
|
syldan |
|
55 |
54
|
sumeq2dv |
|
56 |
20 26 55
|
3eqtr2rd |
|