Step |
Hyp |
Ref |
Expression |
1 |
|
fsumsplit1.kph |
|
2 |
|
fsumsplit1.kd |
|
3 |
|
fsumsplit1.a |
|
4 |
|
fsumsplit1.b |
|
5 |
|
fsumsplit1.c |
|
6 |
|
fsumsplit1.bd |
|
7 |
|
uncom |
|
8 |
7
|
a1i |
|
9 |
5
|
snssd |
|
10 |
|
undif |
|
11 |
9 10
|
sylib |
|
12 |
|
eqidd |
|
13 |
8 11 12
|
3eqtrrd |
|
14 |
13
|
sumeq1d |
|
15 |
|
diffi |
|
16 |
3 15
|
syl |
|
17 |
|
neldifsnd |
|
18 |
|
simpl |
|
19 |
|
eldifi |
|
20 |
19
|
adantl |
|
21 |
18 20 4
|
syl2anc |
|
22 |
2
|
a1i |
|
23 |
|
simpr |
|
24 |
23 6
|
syl |
|
25 |
1 22 5 24
|
csbiedf |
|
26 |
25
|
eqcomd |
|
27 |
5
|
ancli |
|
28 |
|
nfcv |
|
29 |
|
nfv |
|
30 |
1 29
|
nfan |
|
31 |
28
|
nfcsb1 |
|
32 |
|
nfcv |
|
33 |
31 32
|
nfel |
|
34 |
30 33
|
nfim |
|
35 |
|
eleq1 |
|
36 |
35
|
anbi2d |
|
37 |
|
csbeq1a |
|
38 |
37
|
eleq1d |
|
39 |
36 38
|
imbi12d |
|
40 |
28 34 39 4
|
vtoclgf |
|
41 |
5 27 40
|
sylc |
|
42 |
26 41
|
eqeltrd |
|
43 |
1 2 16 5 17 21 6 42
|
fsumsplitsn |
|
44 |
1 16 21
|
fsumclf |
|
45 |
44 42
|
addcomd |
|
46 |
14 43 45
|
3eqtrd |
|