| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumsplit1.kph |  | 
						
							| 2 |  | fsumsplit1.kd |  | 
						
							| 3 |  | fsumsplit1.a |  | 
						
							| 4 |  | fsumsplit1.b |  | 
						
							| 5 |  | fsumsplit1.c |  | 
						
							| 6 |  | fsumsplit1.bd |  | 
						
							| 7 |  | uncom |  | 
						
							| 8 | 7 | a1i |  | 
						
							| 9 | 5 | snssd |  | 
						
							| 10 |  | undif |  | 
						
							| 11 | 9 10 | sylib |  | 
						
							| 12 |  | eqidd |  | 
						
							| 13 | 8 11 12 | 3eqtrrd |  | 
						
							| 14 | 13 | sumeq1d |  | 
						
							| 15 |  | diffi |  | 
						
							| 16 | 3 15 | syl |  | 
						
							| 17 |  | neldifsnd |  | 
						
							| 18 |  | simpl |  | 
						
							| 19 |  | eldifi |  | 
						
							| 20 | 19 | adantl |  | 
						
							| 21 | 18 20 4 | syl2anc |  | 
						
							| 22 | 2 | a1i |  | 
						
							| 23 |  | simpr |  | 
						
							| 24 | 23 6 | syl |  | 
						
							| 25 | 1 22 5 24 | csbiedf |  | 
						
							| 26 | 25 | eqcomd |  | 
						
							| 27 | 5 | ancli |  | 
						
							| 28 |  | nfcv |  | 
						
							| 29 |  | nfv |  | 
						
							| 30 | 1 29 | nfan |  | 
						
							| 31 | 28 | nfcsb1 |  | 
						
							| 32 |  | nfcv |  | 
						
							| 33 | 31 32 | nfel |  | 
						
							| 34 | 30 33 | nfim |  | 
						
							| 35 |  | eleq1 |  | 
						
							| 36 | 35 | anbi2d |  | 
						
							| 37 |  | csbeq1a |  | 
						
							| 38 | 37 | eleq1d |  | 
						
							| 39 | 36 38 | imbi12d |  | 
						
							| 40 | 28 34 39 4 | vtoclgf |  | 
						
							| 41 | 5 27 40 | sylc |  | 
						
							| 42 | 26 41 | eqeltrd |  | 
						
							| 43 | 1 2 16 5 17 21 6 42 | fsumsplitsn |  | 
						
							| 44 | 1 16 21 | fsumclf |  | 
						
							| 45 | 44 42 | addcomd |  | 
						
							| 46 | 14 43 45 | 3eqtrd |  |