| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumsplitf.ph |  | 
						
							| 2 |  | fsumsplitf.ab |  | 
						
							| 3 |  | fsumsplitf.u |  | 
						
							| 4 |  | fsumsplitf.fi |  | 
						
							| 5 |  | fsumsplitf.c |  | 
						
							| 6 |  | csbeq1a |  | 
						
							| 7 |  | nfcv |  | 
						
							| 8 |  | nfcsb1v |  | 
						
							| 9 | 6 7 8 | cbvsum |  | 
						
							| 10 | 9 | a1i |  | 
						
							| 11 |  | nfv |  | 
						
							| 12 | 1 11 | nfan |  | 
						
							| 13 | 8 | nfel1 |  | 
						
							| 14 | 12 13 | nfim |  | 
						
							| 15 |  | eleq1w |  | 
						
							| 16 | 15 | anbi2d |  | 
						
							| 17 | 6 | eleq1d |  | 
						
							| 18 | 16 17 | imbi12d |  | 
						
							| 19 | 14 18 5 | chvarfv |  | 
						
							| 20 | 2 3 4 19 | fsumsplit |  | 
						
							| 21 |  | csbeq1a |  | 
						
							| 22 |  | csbcow |  | 
						
							| 23 |  | csbid |  | 
						
							| 24 | 22 23 | eqtri |  | 
						
							| 25 | 21 24 | eqtrdi |  | 
						
							| 26 | 25 8 7 | cbvsum |  | 
						
							| 27 | 25 8 7 | cbvsum |  | 
						
							| 28 | 26 27 | oveq12i |  | 
						
							| 29 | 28 | a1i |  | 
						
							| 30 | 10 20 29 | 3eqtrd |  |