Step |
Hyp |
Ref |
Expression |
1 |
|
fsumsplitf.ph |
|
2 |
|
fsumsplitf.ab |
|
3 |
|
fsumsplitf.u |
|
4 |
|
fsumsplitf.fi |
|
5 |
|
fsumsplitf.c |
|
6 |
|
nfcv |
|
7 |
|
nfcsb1v |
|
8 |
|
csbeq1a |
|
9 |
6 7 8
|
cbvsumi |
|
10 |
9
|
a1i |
|
11 |
|
nfv |
|
12 |
1 11
|
nfan |
|
13 |
7
|
nfel1 |
|
14 |
12 13
|
nfim |
|
15 |
|
eleq1w |
|
16 |
15
|
anbi2d |
|
17 |
8
|
eleq1d |
|
18 |
16 17
|
imbi12d |
|
19 |
14 18 5
|
chvarfv |
|
20 |
2 3 4 19
|
fsumsplit |
|
21 |
|
csbeq1a |
|
22 |
|
csbcow |
|
23 |
|
csbid |
|
24 |
22 23
|
eqtri |
|
25 |
21 24
|
eqtrdi |
|
26 |
7 6 25
|
cbvsumi |
|
27 |
7 6 25
|
cbvsumi |
|
28 |
26 27
|
oveq12i |
|
29 |
28
|
a1i |
|
30 |
10 20 29
|
3eqtrd |
|