Metamath Proof Explorer


Theorem fsumsplitsn

Description: Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fsumsplitsn.ph k φ
fsumsplitsn.kd _ k D
fsumsplitsn.a φ A Fin
fsumsplitsn.b φ B V
fsumsplitsn.ba φ ¬ B A
fsumsplitsn.c φ k A C
fsumsplitsn.d k = B C = D
fsumsplitsn.dcn φ D
Assertion fsumsplitsn φ k A B C = k A C + D

Proof

Step Hyp Ref Expression
1 fsumsplitsn.ph k φ
2 fsumsplitsn.kd _ k D
3 fsumsplitsn.a φ A Fin
4 fsumsplitsn.b φ B V
5 fsumsplitsn.ba φ ¬ B A
6 fsumsplitsn.c φ k A C
7 fsumsplitsn.d k = B C = D
8 fsumsplitsn.dcn φ D
9 disjsn A B = ¬ B A
10 5 9 sylibr φ A B =
11 eqidd φ A B = A B
12 snfi B Fin
13 unfi A Fin B Fin A B Fin
14 3 12 13 sylancl φ A B Fin
15 6 adantlr φ k A B k A C
16 simpll φ k A B ¬ k A φ
17 elunnel1 k A B ¬ k A k B
18 elsni k B k = B
19 17 18 syl k A B ¬ k A k = B
20 19 adantll φ k A B ¬ k A k = B
21 7 adantl φ k = B C = D
22 8 adantr φ k = B D
23 21 22 eqeltrd φ k = B C
24 16 20 23 syl2anc φ k A B ¬ k A C
25 15 24 pm2.61dan φ k A B C
26 1 10 11 14 25 fsumsplitf φ k A B C = k A C + k B C
27 2 7 sumsnf B V D k B C = D
28 4 8 27 syl2anc φ k B C = D
29 28 oveq2d φ k A C + k B C = k A C + D
30 26 29 eqtrd φ k A B C = k A C + D