| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumsplitsn.ph |  | 
						
							| 2 |  | fsumsplitsn.kd |  | 
						
							| 3 |  | fsumsplitsn.a |  | 
						
							| 4 |  | fsumsplitsn.b |  | 
						
							| 5 |  | fsumsplitsn.ba |  | 
						
							| 6 |  | fsumsplitsn.c |  | 
						
							| 7 |  | fsumsplitsn.d |  | 
						
							| 8 |  | fsumsplitsn.dcn |  | 
						
							| 9 |  | disjsn |  | 
						
							| 10 | 5 9 | sylibr |  | 
						
							| 11 |  | eqidd |  | 
						
							| 12 |  | snfi |  | 
						
							| 13 |  | unfi |  | 
						
							| 14 | 3 12 13 | sylancl |  | 
						
							| 15 | 6 | adantlr |  | 
						
							| 16 |  | simpll |  | 
						
							| 17 |  | elunnel1 |  | 
						
							| 18 |  | elsni |  | 
						
							| 19 | 17 18 | syl |  | 
						
							| 20 | 19 | adantll |  | 
						
							| 21 | 7 | adantl |  | 
						
							| 22 | 8 | adantr |  | 
						
							| 23 | 21 22 | eqeltrd |  | 
						
							| 24 | 16 20 23 | syl2anc |  | 
						
							| 25 | 15 24 | pm2.61dan |  | 
						
							| 26 | 1 10 11 14 25 | fsumsplitf |  | 
						
							| 27 | 2 7 | sumsnf |  | 
						
							| 28 | 4 8 27 | syl2anc |  | 
						
							| 29 | 28 | oveq2d |  | 
						
							| 30 | 26 29 | eqtrd |  |