Step |
Hyp |
Ref |
Expression |
1 |
|
df-nel |
|
2 |
|
disjsn |
|
3 |
1 2
|
sylbb2 |
|
4 |
3
|
adantl |
|
5 |
4
|
3ad2ant2 |
|
6 |
|
eqidd |
|
7 |
|
snfi |
|
8 |
|
unfi |
|
9 |
7 8
|
mpan2 |
|
10 |
9
|
3ad2ant1 |
|
11 |
|
rspcsbela |
|
12 |
11
|
expcom |
|
13 |
12
|
3ad2ant3 |
|
14 |
13
|
imp |
|
15 |
14
|
zcnd |
|
16 |
5 6 10 15
|
fsumsplit |
|
17 |
|
nfcv |
|
18 |
|
nfcsb1v |
|
19 |
|
csbeq1a |
|
20 |
17 18 19
|
cbvsumi |
|
21 |
17 18 19
|
cbvsumi |
|
22 |
17 18 19
|
cbvsumi |
|
23 |
21 22
|
oveq12i |
|
24 |
16 20 23
|
3eqtr4g |
|
25 |
|
simp2l |
|
26 |
|
snidg |
|
27 |
26
|
adantr |
|
28 |
27
|
3ad2ant2 |
|
29 |
|
elun2 |
|
30 |
28 29
|
syl |
|
31 |
|
simp3 |
|
32 |
|
rspcsbela |
|
33 |
30 31 32
|
syl2anc |
|
34 |
33
|
zcnd |
|
35 |
|
sumsns |
|
36 |
25 34 35
|
syl2anc |
|
37 |
36
|
oveq2d |
|
38 |
24 37
|
eqtrd |
|