Metamath Proof Explorer


Theorem fsumsplitsnun

Description: Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 1-Sep-2018) (Revised by AV, 17-Dec-2021)

Ref Expression
Assertion fsumsplitsnun A Fin Z V Z A k A Z B k A Z B = k A B + Z / k B

Proof

Step Hyp Ref Expression
1 df-nel Z A ¬ Z A
2 disjsn A Z = ¬ Z A
3 1 2 sylbb2 Z A A Z =
4 3 adantl Z V Z A A Z =
5 4 3ad2ant2 A Fin Z V Z A k A Z B A Z =
6 eqidd A Fin Z V Z A k A Z B A Z = A Z
7 snfi Z Fin
8 unfi A Fin Z Fin A Z Fin
9 7 8 mpan2 A Fin A Z Fin
10 9 3ad2ant1 A Fin Z V Z A k A Z B A Z Fin
11 rspcsbela x A Z k A Z B x / k B
12 11 expcom k A Z B x A Z x / k B
13 12 3ad2ant3 A Fin Z V Z A k A Z B x A Z x / k B
14 13 imp A Fin Z V Z A k A Z B x A Z x / k B
15 14 zcnd A Fin Z V Z A k A Z B x A Z x / k B
16 5 6 10 15 fsumsplit A Fin Z V Z A k A Z B x A Z x / k B = x A x / k B + x Z x / k B
17 nfcv _ x B
18 nfcsb1v _ k x / k B
19 csbeq1a k = x B = x / k B
20 17 18 19 cbvsumi k A Z B = x A Z x / k B
21 17 18 19 cbvsumi k A B = x A x / k B
22 17 18 19 cbvsumi k Z B = x Z x / k B
23 21 22 oveq12i k A B + k Z B = x A x / k B + x Z x / k B
24 16 20 23 3eqtr4g A Fin Z V Z A k A Z B k A Z B = k A B + k Z B
25 simp2l A Fin Z V Z A k A Z B Z V
26 snidg Z V Z Z
27 26 adantr Z V Z A Z Z
28 27 3ad2ant2 A Fin Z V Z A k A Z B Z Z
29 elun2 Z Z Z A Z
30 28 29 syl A Fin Z V Z A k A Z B Z A Z
31 simp3 A Fin Z V Z A k A Z B k A Z B
32 rspcsbela Z A Z k A Z B Z / k B
33 30 31 32 syl2anc A Fin Z V Z A k A Z B Z / k B
34 33 zcnd A Fin Z V Z A k A Z B Z / k B
35 sumsns Z V Z / k B k Z B = Z / k B
36 25 34 35 syl2anc A Fin Z V Z A k A Z B k Z B = Z / k B
37 36 oveq2d A Fin Z V Z A k A Z B k A B + k Z B = k A B + Z / k B
38 24 37 eqtrd A Fin Z V Z A k A Z B k A Z B = k A B + Z / k B