Step |
Hyp |
Ref |
Expression |
1 |
|
sumss.1 |
|
2 |
|
sumss.2 |
|
3 |
|
sumss.3 |
|
4 |
|
fsumss.4 |
|
5 |
1
|
adantr |
|
6 |
2
|
adantlr |
|
7 |
3
|
adantlr |
|
8 |
|
simpr |
|
9 |
|
0ss |
|
10 |
8 9
|
eqsstrdi |
|
11 |
5 6 7 10
|
sumss |
|
12 |
11
|
ex |
|
13 |
|
cnvimass |
|
14 |
|
simprr |
|
15 |
|
f1of |
|
16 |
14 15
|
syl |
|
17 |
13 16
|
fssdm |
|
18 |
16
|
ffnd |
|
19 |
|
elpreima |
|
20 |
18 19
|
syl |
|
21 |
16
|
ffvelrnda |
|
22 |
21
|
ex |
|
23 |
22
|
adantrd |
|
24 |
20 23
|
sylbid |
|
25 |
24
|
imp |
|
26 |
2
|
ex |
|
27 |
26
|
adantr |
|
28 |
|
eldif |
|
29 |
|
0cn |
|
30 |
3 29
|
eqeltrdi |
|
31 |
28 30
|
sylan2br |
|
32 |
31
|
expr |
|
33 |
27 32
|
pm2.61d |
|
34 |
33
|
fmpttd |
|
35 |
34
|
adantr |
|
36 |
35
|
ffvelrnda |
|
37 |
25 36
|
syldan |
|
38 |
|
eldifi |
|
39 |
38 21
|
sylan2 |
|
40 |
|
eldifn |
|
41 |
40
|
adantl |
|
42 |
38
|
adantl |
|
43 |
20
|
adantr |
|
44 |
42 43
|
mpbirand |
|
45 |
41 44
|
mtbid |
|
46 |
39 45
|
eldifd |
|
47 |
|
difss |
|
48 |
|
resmpt |
|
49 |
47 48
|
ax-mp |
|
50 |
49
|
fveq1i |
|
51 |
|
fvres |
|
52 |
50 51
|
eqtr3id |
|
53 |
46 52
|
syl |
|
54 |
|
c0ex |
|
55 |
54
|
elsn2 |
|
56 |
3 55
|
sylibr |
|
57 |
56
|
fmpttd |
|
58 |
57
|
ad2antrr |
|
59 |
58 46
|
ffvelrnd |
|
60 |
|
elsni |
|
61 |
59 60
|
syl |
|
62 |
53 61
|
eqtr3d |
|
63 |
|
fzssuz |
|
64 |
63
|
a1i |
|
65 |
17 37 62 64
|
sumss |
|
66 |
1
|
ad2antrr |
|
67 |
66
|
resmptd |
|
68 |
67
|
fveq1d |
|
69 |
|
fvres |
|
70 |
69
|
adantl |
|
71 |
68 70
|
eqtr3d |
|
72 |
71
|
sumeq2dv |
|
73 |
|
fveq2 |
|
74 |
|
fzfid |
|
75 |
74 16
|
fisuppfi |
|
76 |
|
f1of1 |
|
77 |
14 76
|
syl |
|
78 |
|
f1ores |
|
79 |
77 17 78
|
syl2anc |
|
80 |
|
f1ofo |
|
81 |
14 80
|
syl |
|
82 |
1
|
adantr |
|
83 |
|
foimacnv |
|
84 |
81 82 83
|
syl2anc |
|
85 |
84
|
f1oeq3d |
|
86 |
79 85
|
mpbid |
|
87 |
|
fvres |
|
88 |
87
|
adantl |
|
89 |
82
|
sselda |
|
90 |
35
|
ffvelrnda |
|
91 |
89 90
|
syldan |
|
92 |
73 75 86 88 91
|
fsumf1o |
|
93 |
72 92
|
eqtrd |
|
94 |
|
eqidd |
|
95 |
73 74 14 94 90
|
fsumf1o |
|
96 |
65 93 95
|
3eqtr4d |
|
97 |
|
sumfc |
|
98 |
|
sumfc |
|
99 |
96 97 98
|
3eqtr3g |
|
100 |
99
|
expr |
|
101 |
100
|
exlimdv |
|
102 |
101
|
expimpd |
|
103 |
|
fz1f1o |
|
104 |
4 103
|
syl |
|
105 |
12 102 104
|
mpjaod |
|