| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumss.1 |
|
| 2 |
|
sumss.2 |
|
| 3 |
|
sumss.3 |
|
| 4 |
|
fsumss.4 |
|
| 5 |
1
|
adantr |
|
| 6 |
2
|
adantlr |
|
| 7 |
3
|
adantlr |
|
| 8 |
|
simpr |
|
| 9 |
|
0ss |
|
| 10 |
8 9
|
eqsstrdi |
|
| 11 |
5 6 7 10
|
sumss |
|
| 12 |
11
|
ex |
|
| 13 |
|
cnvimass |
|
| 14 |
|
simprr |
|
| 15 |
|
f1of |
|
| 16 |
14 15
|
syl |
|
| 17 |
13 16
|
fssdm |
|
| 18 |
16
|
ffnd |
|
| 19 |
|
elpreima |
|
| 20 |
18 19
|
syl |
|
| 21 |
16
|
ffvelcdmda |
|
| 22 |
21
|
ex |
|
| 23 |
22
|
adantrd |
|
| 24 |
20 23
|
sylbid |
|
| 25 |
24
|
imp |
|
| 26 |
2
|
ex |
|
| 27 |
26
|
adantr |
|
| 28 |
|
eldif |
|
| 29 |
|
0cn |
|
| 30 |
3 29
|
eqeltrdi |
|
| 31 |
28 30
|
sylan2br |
|
| 32 |
31
|
expr |
|
| 33 |
27 32
|
pm2.61d |
|
| 34 |
33
|
fmpttd |
|
| 35 |
34
|
adantr |
|
| 36 |
35
|
ffvelcdmda |
|
| 37 |
25 36
|
syldan |
|
| 38 |
|
eldifi |
|
| 39 |
38 21
|
sylan2 |
|
| 40 |
|
eldifn |
|
| 41 |
40
|
adantl |
|
| 42 |
38
|
adantl |
|
| 43 |
20
|
adantr |
|
| 44 |
42 43
|
mpbirand |
|
| 45 |
41 44
|
mtbid |
|
| 46 |
39 45
|
eldifd |
|
| 47 |
|
difss |
|
| 48 |
|
resmpt |
|
| 49 |
47 48
|
ax-mp |
|
| 50 |
49
|
fveq1i |
|
| 51 |
|
fvres |
|
| 52 |
50 51
|
eqtr3id |
|
| 53 |
46 52
|
syl |
|
| 54 |
|
c0ex |
|
| 55 |
54
|
elsn2 |
|
| 56 |
3 55
|
sylibr |
|
| 57 |
56
|
fmpttd |
|
| 58 |
57
|
ad2antrr |
|
| 59 |
58 46
|
ffvelcdmd |
|
| 60 |
|
elsni |
|
| 61 |
59 60
|
syl |
|
| 62 |
53 61
|
eqtr3d |
|
| 63 |
|
fzssuz |
|
| 64 |
63
|
a1i |
|
| 65 |
17 37 62 64
|
sumss |
|
| 66 |
1
|
ad2antrr |
|
| 67 |
66
|
resmptd |
|
| 68 |
67
|
fveq1d |
|
| 69 |
|
fvres |
|
| 70 |
69
|
adantl |
|
| 71 |
68 70
|
eqtr3d |
|
| 72 |
71
|
sumeq2dv |
|
| 73 |
|
fveq2 |
|
| 74 |
|
fzfid |
|
| 75 |
74 16
|
fisuppfi |
|
| 76 |
|
f1of1 |
|
| 77 |
14 76
|
syl |
|
| 78 |
|
f1ores |
|
| 79 |
77 17 78
|
syl2anc |
|
| 80 |
|
f1ofo |
|
| 81 |
14 80
|
syl |
|
| 82 |
1
|
adantr |
|
| 83 |
|
foimacnv |
|
| 84 |
81 82 83
|
syl2anc |
|
| 85 |
84
|
f1oeq3d |
|
| 86 |
79 85
|
mpbid |
|
| 87 |
|
fvres |
|
| 88 |
87
|
adantl |
|
| 89 |
82
|
sselda |
|
| 90 |
35
|
ffvelcdmda |
|
| 91 |
89 90
|
syldan |
|
| 92 |
73 75 86 88 91
|
fsumf1o |
|
| 93 |
72 92
|
eqtrd |
|
| 94 |
|
eqidd |
|
| 95 |
73 74 14 94 90
|
fsumf1o |
|
| 96 |
65 93 95
|
3eqtr4d |
|
| 97 |
|
sumfc |
|
| 98 |
|
sumfc |
|
| 99 |
96 97 98
|
3eqtr3g |
|
| 100 |
99
|
expr |
|
| 101 |
100
|
exlimdv |
|
| 102 |
101
|
expimpd |
|
| 103 |
|
fz1f1o |
|
| 104 |
4 103
|
syl |
|
| 105 |
12 102 104
|
mpjaod |
|