Metamath Proof Explorer


Theorem fsumsub

Description: Split a finite sum over a subtraction. (Contributed by Scott Fenton, 12-Jun-2013) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsumneg.1 φ A Fin
fsumneg.2 φ k A B
fsumsub.3 φ k A C
Assertion fsumsub φ k A B C = k A B k A C

Proof

Step Hyp Ref Expression
1 fsumneg.1 φ A Fin
2 fsumneg.2 φ k A B
3 fsumsub.3 φ k A C
4 3 negcld φ k A C
5 1 2 4 fsumadd φ k A B + C = k A B + k A C
6 1 3 fsumneg φ k A C = k A C
7 6 oveq2d φ k A B + k A C = k A B + k A C
8 5 7 eqtrd φ k A B + C = k A B + k A C
9 2 3 negsubd φ k A B + C = B C
10 9 sumeq2dv φ k A B + C = k A B C
11 1 2 fsumcl φ k A B
12 1 3 fsumcl φ k A C
13 11 12 negsubd φ k A B + k A C = k A B k A C
14 8 10 13 3eqtr3d φ k A B C = k A B k A C