| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumsupp0.a |
|
| 2 |
|
fsumsupp0.f |
|
| 3 |
2
|
ffnd |
|
| 4 |
|
0red |
|
| 5 |
|
suppvalfn |
|
| 6 |
3 1 4 5
|
syl3anc |
|
| 7 |
|
ssrab2 |
|
| 8 |
6 7
|
eqsstrdi |
|
| 9 |
2
|
adantr |
|
| 10 |
8
|
sselda |
|
| 11 |
9 10
|
ffvelcdmd |
|
| 12 |
|
eldifi |
|
| 13 |
12
|
adantr |
|
| 14 |
|
neqne |
|
| 15 |
14
|
adantl |
|
| 16 |
13 15
|
jca |
|
| 17 |
|
rabid |
|
| 18 |
16 17
|
sylibr |
|
| 19 |
18
|
adantll |
|
| 20 |
6
|
eleq2d |
|
| 21 |
20
|
ad2antrr |
|
| 22 |
19 21
|
mpbird |
|
| 23 |
|
eldifn |
|
| 24 |
23
|
ad2antlr |
|
| 25 |
22 24
|
condan |
|
| 26 |
8 11 25 1
|
fsumss |
|