Metamath Proof Explorer


Theorem fsumsupp0

Description: Finite sum of function values, for a function of finite support. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses fsumsupp0.a φ A Fin
fsumsupp0.f φ F : A
Assertion fsumsupp0 φ k F supp 0 F k = k A F k

Proof

Step Hyp Ref Expression
1 fsumsupp0.a φ A Fin
2 fsumsupp0.f φ F : A
3 2 ffnd φ F Fn A
4 0red φ 0
5 suppvalfn F Fn A A Fin 0 F supp 0 = k A | F k 0
6 3 1 4 5 syl3anc φ F supp 0 = k A | F k 0
7 ssrab2 k A | F k 0 A
8 6 7 eqsstrdi φ F supp 0 A
9 2 adantr φ k supp 0 F F : A
10 8 sselda φ k supp 0 F k A
11 9 10 ffvelrnd φ k supp 0 F F k
12 eldifi k A supp 0 F k A
13 12 adantr k A supp 0 F ¬ F k = 0 k A
14 neqne ¬ F k = 0 F k 0
15 14 adantl k A supp 0 F ¬ F k = 0 F k 0
16 13 15 jca k A supp 0 F ¬ F k = 0 k A F k 0
17 rabid k k A | F k 0 k A F k 0
18 16 17 sylibr k A supp 0 F ¬ F k = 0 k k A | F k 0
19 18 adantll φ k A supp 0 F ¬ F k = 0 k k A | F k 0
20 6 eleq2d φ k supp 0 F k k A | F k 0
21 20 ad2antrr φ k A supp 0 F ¬ F k = 0 k supp 0 F k k A | F k 0
22 19 21 mpbird φ k A supp 0 F ¬ F k = 0 k supp 0 F
23 eldifn k A supp 0 F ¬ k supp 0 F
24 23 ad2antlr φ k A supp 0 F ¬ F k = 0 ¬ k supp 0 F
25 22 24 condan φ k A supp 0 F F k = 0
26 8 11 25 1 fsumss φ k F supp 0 F k = k A F k