Metamath Proof Explorer


Theorem fsumub

Description: An upper bound for a term of a positive finite sum. (Contributed by Thierry Arnoux, 27-Dec-2021)

Ref Expression
Hypotheses fsumub.1 k = K B = D
fsumub.2 φ A Fin
fsumub.3 φ k A B = C
fsumub.4 φ k A B +
fsumub.k φ K A
Assertion fsumub φ D C

Proof

Step Hyp Ref Expression
1 fsumub.1 k = K B = D
2 fsumub.2 φ A Fin
3 fsumub.3 φ k A B = C
4 fsumub.4 φ k A B +
5 fsumub.k φ K A
6 4 rpred φ k A B
7 4 rpge0d φ k A 0 B
8 2 6 7 1 5 fsumge1 φ D k A B
9 8 3 breqtrd φ D C