Metamath Proof Explorer


Theorem fsumvma2

Description: Apply fsumvma for the common case of all numbers less than a real number A . (Contributed by Mario Carneiro, 30-Apr-2016)

Ref Expression
Hypotheses fsumvma2.1 x = p k B = C
fsumvma2.2 φ A
fsumvma2.3 φ x 1 A B
fsumvma2.4 φ x 1 A Λ x = 0 B = 0
Assertion fsumvma2 φ x = 1 A B = p 0 A k = 1 log A log p C

Proof

Step Hyp Ref Expression
1 fsumvma2.1 x = p k B = C
2 fsumvma2.2 φ A
3 fsumvma2.3 φ x 1 A B
4 fsumvma2.4 φ x 1 A Λ x = 0 B = 0
5 fzfid φ 1 A Fin
6 fz1ssnn 1 A
7 6 a1i φ 1 A
8 ppifi A 0 A Fin
9 2 8 syl φ 0 A Fin
10 elinel2 p 0 A p
11 elfznn k 1 log A log p k
12 10 11 anim12i p 0 A k 1 log A log p p k
13 12 pm4.71ri p 0 A k 1 log A log p p k p 0 A k 1 log A log p
14 2 adantr φ p k A
15 prmnn p p
16 15 ad2antrl φ p k p
17 nnnn0 k k 0
18 17 ad2antll φ p k k 0
19 16 18 nnexpcld φ p k p k
20 19 nnzd φ p k p k
21 flge A p k p k A p k A
22 14 20 21 syl2anc φ p k p k A p k A
23 simplrl φ p k p 0 A p
24 23 15 syl φ p k p 0 A p
25 24 nnrpd φ p k p 0 A p +
26 simplrr φ p k p 0 A k
27 26 nnzd φ p k p 0 A k
28 relogexp p + k log p k = k log p
29 25 27 28 syl2anc φ p k p 0 A log p k = k log p
30 29 breq1d φ p k p 0 A log p k log A k log p log A
31 26 nnred φ p k p 0 A k
32 14 adantr φ p k p 0 A A
33 0red φ p k p 0 A 0
34 16 nnred φ p k p
35 34 adantr φ p k p 0 A p
36 24 nngt0d φ p k p 0 A 0 < p
37 0red φ p k 0
38 16 nnnn0d φ p k p 0
39 38 nn0ge0d φ p k 0 p
40 elicc2 0 A p 0 A p 0 p p A
41 df-3an p 0 p p A p 0 p p A
42 40 41 bitrdi 0 A p 0 A p 0 p p A
43 42 baibd 0 A p 0 p p 0 A p A
44 37 14 34 39 43 syl22anc φ p k p 0 A p A
45 44 biimpa φ p k p 0 A p A
46 33 35 32 36 45 ltletrd φ p k p 0 A 0 < A
47 32 46 elrpd φ p k p 0 A A +
48 47 relogcld φ p k p 0 A log A
49 prmuz2 p p 2
50 eluzelre p 2 p
51 eluz2gt1 p 2 1 < p
52 50 51 rplogcld p 2 log p +
53 23 49 52 3syl φ p k p 0 A log p +
54 31 48 53 lemuldivd φ p k p 0 A k log p log A k log A log p
55 48 53 rerpdivcld φ p k p 0 A log A log p
56 flge log A log p k k log A log p k log A log p
57 55 27 56 syl2anc φ p k p 0 A k log A log p k log A log p
58 30 54 57 3bitrd φ p k p 0 A log p k log A k log A log p
59 19 adantr φ p k p 0 A p k
60 59 nnrpd φ p k p 0 A p k +
61 60 47 logled φ p k p 0 A p k A log p k log A
62 simprr φ p k k
63 nnuz = 1
64 62 63 eleqtrdi φ p k k 1
65 64 adantr φ p k p 0 A k 1
66 55 flcld φ p k p 0 A log A log p
67 elfz5 k 1 log A log p k 1 log A log p k log A log p
68 65 66 67 syl2anc φ p k p 0 A k 1 log A log p k log A log p
69 58 61 68 3bitr4d φ p k p 0 A p k A k 1 log A log p
70 69 pm5.32da φ p k p 0 A p k A p 0 A k 1 log A log p
71 16 nncnd φ p k p
72 71 exp1d φ p k p 1 = p
73 16 nnge1d φ p k 1 p
74 34 73 64 leexp2ad φ p k p 1 p k
75 72 74 eqbrtrrd φ p k p p k
76 19 nnred φ p k p k
77 letr p p k A p p k p k A p A
78 34 76 14 77 syl3anc φ p k p p k p k A p A
79 75 78 mpand φ p k p k A p A
80 79 44 sylibrd φ p k p k A p 0 A
81 80 pm4.71rd φ p k p k A p 0 A p k A
82 elin p 0 A p 0 A p
83 82 rbaib p p 0 A p 0 A
84 83 ad2antrl φ p k p 0 A p 0 A
85 84 anbi1d φ p k p 0 A k 1 log A log p p 0 A k 1 log A log p
86 70 81 85 3bitr4rd φ p k p 0 A k 1 log A log p p k A
87 19 63 eleqtrdi φ p k p k 1
88 14 flcld φ p k A
89 elfz5 p k 1 A p k 1 A p k A
90 87 88 89 syl2anc φ p k p k 1 A p k A
91 22 86 90 3bitr4d φ p k p 0 A k 1 log A log p p k 1 A
92 91 pm5.32da φ p k p 0 A k 1 log A log p p k p k 1 A
93 13 92 syl5bb φ p 0 A k 1 log A log p p k p k 1 A
94 1 5 7 9 93 3 4 fsumvma φ x = 1 A B = p 0 A k = 1 log A log p C