Metamath Proof Explorer


Theorem fsumzcl2

Description: A finite sum with integer summands is an integer. (Contributed by Alexander van der Vekens, 31-Aug-2018)

Ref Expression
Assertion fsumzcl2 A Fin k A B k A B

Proof

Step Hyp Ref Expression
1 nfcv _ x B
2 nfcsb1v _ k x / k B
3 csbeq1a k = x B = x / k B
4 1 2 3 cbvsumi k A B = x A x / k B
5 simpl A Fin k A B A Fin
6 rspcsbela x A k A B x / k B
7 6 expcom k A B x A x / k B
8 7 adantl A Fin k A B x A x / k B
9 8 imp A Fin k A B x A x / k B
10 5 9 fsumzcl A Fin k A B x A x / k B
11 4 10 eqeltrid A Fin k A B k A B