Metamath Proof Explorer


Theorem fsuppco2

Description: The composition of a function which maps the zero to zero with a finitely supported function is finitely supported. This is not only a special case of fsuppcor because it does not require that the "zero" is an element of the range of the finitely supported function. (Contributed by AV, 6-Jun-2019)

Ref Expression
Hypotheses fsuppco2.z φ Z W
fsuppco2.f φ F : A B
fsuppco2.g φ G : B B
fsuppco2.a φ A U
fsuppco2.b φ B V
fsuppco2.n φ finSupp Z F
fsuppco2.i φ G Z = Z
Assertion fsuppco2 φ finSupp Z G F

Proof

Step Hyp Ref Expression
1 fsuppco2.z φ Z W
2 fsuppco2.f φ F : A B
3 fsuppco2.g φ G : B B
4 fsuppco2.a φ A U
5 fsuppco2.b φ B V
6 fsuppco2.n φ finSupp Z F
7 fsuppco2.i φ G Z = Z
8 3 ffund φ Fun G
9 2 ffund φ Fun F
10 funco Fun G Fun F Fun G F
11 8 9 10 syl2anc φ Fun G F
12 6 fsuppimpd φ F supp Z Fin
13 fco G : B B F : A B G F : A B
14 3 2 13 syl2anc φ G F : A B
15 eldifi x A supp Z F x A
16 fvco3 F : A B x A G F x = G F x
17 2 15 16 syl2an φ x A supp Z F G F x = G F x
18 ssidd φ F supp Z F supp Z
19 2 18 4 1 suppssr φ x A supp Z F F x = Z
20 19 fveq2d φ x A supp Z F G F x = G Z
21 7 adantr φ x A supp Z F G Z = Z
22 17 20 21 3eqtrd φ x A supp Z F G F x = Z
23 14 22 suppss φ G F supp Z F supp Z
24 12 23 ssfid φ G F supp Z Fin
25 3 5 fexd φ G V
26 2 4 fexd φ F V
27 coexg G V F V G F V
28 25 26 27 syl2anc φ G F V
29 isfsupp G F V Z W finSupp Z G F Fun G F G F supp Z Fin
30 28 1 29 syl2anc φ finSupp Z G F Fun G F G F supp Z Fin
31 11 24 30 mpbir2and φ finSupp Z G F