| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsuppcor.0 |
|
| 2 |
|
fsuppcor.z |
|
| 3 |
|
fsuppcor.f |
|
| 4 |
|
fsuppcor.g |
|
| 5 |
|
fsuppcor.s |
|
| 6 |
|
fsuppcor.a |
|
| 7 |
|
fsuppcor.b |
|
| 8 |
|
fsuppcor.n |
|
| 9 |
|
fsuppcor.i |
|
| 10 |
4
|
ffund |
|
| 11 |
3
|
ffund |
|
| 12 |
|
funco |
|
| 13 |
10 11 12
|
syl2anc |
|
| 14 |
8
|
fsuppimpd |
|
| 15 |
4 5
|
fssresd |
|
| 16 |
|
fco2 |
|
| 17 |
15 3 16
|
syl2anc |
|
| 18 |
|
eldifi |
|
| 19 |
|
fvco3 |
|
| 20 |
3 18 19
|
syl2an |
|
| 21 |
|
ssidd |
|
| 22 |
3 21 6 2
|
suppssr |
|
| 23 |
22
|
fveq2d |
|
| 24 |
9
|
adantr |
|
| 25 |
20 23 24
|
3eqtrd |
|
| 26 |
17 25
|
suppss |
|
| 27 |
14 26
|
ssfid |
|
| 28 |
4 7
|
fexd |
|
| 29 |
3 6
|
fexd |
|
| 30 |
|
coexg |
|
| 31 |
28 29 30
|
syl2anc |
|
| 32 |
|
isfsupp |
|
| 33 |
31 1 32
|
syl2anc |
|
| 34 |
13 27 33
|
mpbir2and |
|