Step |
Hyp |
Ref |
Expression |
1 |
|
fsuppcurry1.g |
|
2 |
|
fsuppcurry1.z |
|
3 |
|
fsuppcurry1.a |
|
4 |
|
fsuppcurry1.b |
|
5 |
|
fsuppcurry1.f |
|
6 |
|
fsuppcurry1.c |
|
7 |
|
fsuppcurry1.1 |
|
8 |
|
oveq2 |
|
9 |
8
|
cbvmptv |
|
10 |
1 9
|
eqtri |
|
11 |
4
|
mptexd |
|
12 |
10 11
|
eqeltrid |
|
13 |
1
|
funmpt2 |
|
14 |
13
|
a1i |
|
15 |
|
fo2nd |
|
16 |
|
fofun |
|
17 |
15 16
|
ax-mp |
|
18 |
|
funres |
|
19 |
17 18
|
mp1i |
|
20 |
7
|
fsuppimpd |
|
21 |
|
imafi |
|
22 |
19 20 21
|
syl2anc |
|
23 |
|
ovexd |
|
24 |
23 10
|
fmptd |
|
25 |
|
eldif |
|
26 |
6
|
ad2antrr |
|
27 |
|
simplr |
|
28 |
26 27
|
opelxpd |
|
29 |
|
df-ov |
|
30 |
|
ovexd |
|
31 |
1 8 27 30
|
fvmptd3 |
|
32 |
|
simpr |
|
33 |
32
|
neqned |
|
34 |
31 33
|
eqnetrrd |
|
35 |
29 34
|
eqnetrrid |
|
36 |
3 4
|
xpexd |
|
37 |
|
elsuppfn |
|
38 |
5 36 2 37
|
syl3anc |
|
39 |
38
|
ad2antrr |
|
40 |
28 35 39
|
mpbir2and |
|
41 |
|
simpr |
|
42 |
41
|
fveq2d |
|
43 |
|
xpss |
|
44 |
28
|
adantr |
|
45 |
43 44
|
sselid |
|
46 |
45
|
fvresd |
|
47 |
26
|
adantr |
|
48 |
27
|
adantr |
|
49 |
|
op2ndg |
|
50 |
47 48 49
|
syl2anc |
|
51 |
42 46 50
|
3eqtrd |
|
52 |
40 51
|
rspcedeq1vd |
|
53 |
|
fofn |
|
54 |
|
fnresin |
|
55 |
15 53 54
|
mp2b |
|
56 |
|
ssv |
|
57 |
|
sseqin2 |
|
58 |
56 57
|
mpbi |
|
59 |
58
|
fneq2i |
|
60 |
55 59
|
mpbi |
|
61 |
60
|
a1i |
|
62 |
|
suppssdm |
|
63 |
5
|
fndmd |
|
64 |
62 63
|
sseqtrid |
|
65 |
64 43
|
sstrdi |
|
66 |
61 65
|
fvelimabd |
|
67 |
66
|
ad2antrr |
|
68 |
52 67
|
mpbird |
|
69 |
68
|
ex |
|
70 |
69
|
con1d |
|
71 |
70
|
impr |
|
72 |
25 71
|
sylan2b |
|
73 |
24 72
|
suppss |
|
74 |
|
suppssfifsupp |
|
75 |
12 14 2 22 73 74
|
syl32anc |
|