Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finitely supported functions
fsuppfund
Next ⟩
fisuppfi
Metamath Proof Explorer
Ascii
Unicode
Theorem
fsuppfund
Description:
A finitely supported function is a function.
(Contributed by
SN
, 8-Mar-2025)
Ref
Expression
Hypothesis
fsuppfund.1
⊢
φ
→
finSupp
Z
⁡
F
Assertion
fsuppfund
⊢
φ
→
Fun
⁡
F
Proof
Step
Hyp
Ref
Expression
1
fsuppfund.1
⊢
φ
→
finSupp
Z
⁡
F
2
fsuppimp
⊢
finSupp
Z
⁡
F
→
Fun
⁡
F
∧
F
supp
Z
∈
Fin
3
2
simpld
⊢
finSupp
Z
⁡
F
→
Fun
⁡
F
4
1
3
syl
⊢
φ
→
Fun
⁡
F