Metamath Proof Explorer


Theorem fsuppfund

Description: A finitely supported function is a function. (Contributed by SN, 8-Mar-2025)

Ref Expression
Hypothesis fsuppfund.1 φ finSupp Z F
Assertion fsuppfund φ Fun F

Proof

Step Hyp Ref Expression
1 fsuppfund.1 φ finSupp Z F
2 fsuppimp finSupp Z F Fun F F supp Z Fin
3 2 simpld finSupp Z F Fun F
4 1 3 syl φ Fun F