Metamath Proof Explorer


Theorem fsuppimp

Description: Implications of a class being a finitely supported function (in relation to a given zero). (Contributed by AV, 26-May-2019)

Ref Expression
Assertion fsuppimp finSupp Z R Fun R R supp Z Fin

Proof

Step Hyp Ref Expression
1 relfsupp Rel finSupp
2 1 brrelex12i finSupp Z R R V Z V
3 isfsupp R V Z V finSupp Z R Fun R R supp Z Fin
4 3 biimpd R V Z V finSupp Z R Fun R R supp Z Fin
5 2 4 mpcom finSupp Z R Fun R R supp Z Fin