Metamath Proof Explorer


Theorem fsuppimpd

Description: A finitely supported function is a function with a finite support. (Contributed by AV, 6-Jun-2019)

Ref Expression
Hypothesis fsuppimpd.f φ finSupp Z F
Assertion fsuppimpd φ F supp Z Fin

Proof

Step Hyp Ref Expression
1 fsuppimpd.f φ finSupp Z F
2 fsuppimp finSupp Z F Fun F F supp Z Fin
3 2 simprd finSupp Z F F supp Z Fin
4 1 3 syl φ F supp Z Fin