Step |
Hyp |
Ref |
Expression |
1 |
|
fsuppmapnn0fiub.u |
|
2 |
|
fsuppmapnn0fiub.s |
|
3 |
|
nfv |
|
4 |
|
nfra1 |
|
5 |
|
nfv |
|
6 |
4 5
|
nfan |
|
7 |
3 6
|
nfan |
|
8 |
|
suppssdm |
|
9 |
|
ssel2 |
|
10 |
|
elmapfn |
|
11 |
|
fndm |
|
12 |
|
eqimss |
|
13 |
11 12
|
syl |
|
14 |
9 10 13
|
3syl |
|
15 |
14
|
3ad2antl1 |
|
16 |
8 15
|
sstrid |
|
17 |
16
|
sseld |
|
18 |
17
|
adantlr |
|
19 |
18
|
imp |
|
20 |
1 2
|
fsuppmapnn0fiublem |
|
21 |
20
|
imp |
|
22 |
21
|
ad2antrr |
|
23 |
9 10 11
|
3syl |
|
24 |
23
|
ex |
|
25 |
24
|
3ad2ant1 |
|
26 |
25
|
adantr |
|
27 |
26
|
imp |
|
28 |
|
nn0ssre |
|
29 |
27 28
|
eqsstrdi |
|
30 |
8 29
|
sstrid |
|
31 |
30
|
ex |
|
32 |
7 31
|
ralrimi |
|
33 |
32
|
ad2antrr |
|
34 |
|
iunss |
|
35 |
33 34
|
sylibr |
|
36 |
1 35
|
eqsstrid |
|
37 |
|
simp2 |
|
38 |
|
id |
|
39 |
38
|
fsuppimpd |
|
40 |
39
|
ralimi |
|
41 |
40
|
adantr |
|
42 |
37 41
|
anim12i |
|
43 |
42
|
ad2antrr |
|
44 |
|
iunfi |
|
45 |
43 44
|
syl |
|
46 |
1 45
|
eqeltrid |
|
47 |
|
rspe |
|
48 |
|
eliun |
|
49 |
47 48
|
sylibr |
|
50 |
49 1
|
eleqtrrdi |
|
51 |
50
|
adantll |
|
52 |
2
|
a1i |
|
53 |
36 46 51 52
|
supfirege |
|
54 |
|
elfz2nn0 |
|
55 |
19 22 53 54
|
syl3anbrc |
|
56 |
55
|
ex |
|
57 |
56
|
ssrdv |
|
58 |
57
|
ex |
|
59 |
7 58
|
ralrimi |
|
60 |
59
|
ex |
|