Step |
Hyp |
Ref |
Expression |
1 |
|
0nn0 |
|
2 |
1
|
a1i |
|
3 |
|
oveq2 |
|
4 |
3
|
sseq2d |
|
5 |
4
|
ralbidv |
|
6 |
5
|
adantl |
|
7 |
|
ral0 |
|
8 |
|
raleq |
|
9 |
7 8
|
mpbii |
|
10 |
|
0ss |
|
11 |
|
sseq1 |
|
12 |
10 11
|
mpbiri |
|
13 |
12
|
ralimi |
|
14 |
9 13
|
jaoi |
|
15 |
2 6 14
|
rspcedvd |
|
16 |
15
|
2a1d |
|
17 |
|
simplr |
|
18 |
|
simpr |
|
19 |
|
ioran |
|
20 |
|
oveq1 |
|
21 |
20
|
eqeq1d |
|
22 |
21
|
cbvralvw |
|
23 |
22
|
notbii |
|
24 |
23
|
anbi2i |
|
25 |
19 24
|
bitri |
|
26 |
|
rexnal |
|
27 |
|
df-ne |
|
28 |
27
|
bicomi |
|
29 |
28
|
rexbii |
|
30 |
26 29
|
sylbb1 |
|
31 |
25 30
|
simplbiim |
|
32 |
31
|
ad2antrr |
|
33 |
|
iunn0 |
|
34 |
32 33
|
sylib |
|
35 |
18 34
|
jca |
|
36 |
|
oveq1 |
|
37 |
36
|
cbviunv |
|
38 |
|
eqid |
|
39 |
37 38
|
fsuppmapnn0fiublem |
|
40 |
17 35 39
|
sylc |
|
41 |
|
nfv |
|
42 |
|
nfra1 |
|
43 |
41 42
|
nfor |
|
44 |
43
|
nfn |
|
45 |
|
nfv |
|
46 |
44 45
|
nfan |
|
47 |
|
nfra1 |
|
48 |
46 47
|
nfan |
|
49 |
|
nfv |
|
50 |
48 49
|
nfan |
|
51 |
|
oveq2 |
|
52 |
51
|
sseq2d |
|
53 |
52
|
adantl |
|
54 |
50 53
|
ralbid |
|
55 |
|
rexnal |
|
56 |
|
df-ne |
|
57 |
56
|
bicomi |
|
58 |
57
|
rexbii |
|
59 |
55 58
|
sylbb1 |
|
60 |
19 59
|
simplbiim |
|
61 |
60
|
ad2antrr |
|
62 |
|
iunn0 |
|
63 |
20
|
cbviunv |
|
64 |
63
|
neeq1i |
|
65 |
62 64
|
bitri |
|
66 |
61 65
|
sylib |
|
67 |
18 66
|
jca |
|
68 |
37 38
|
fsuppmapnn0fiub |
|
69 |
17 67 68
|
sylc |
|
70 |
40 54 69
|
rspcedvd |
|
71 |
70
|
exp31 |
|
72 |
16 71
|
pm2.61i |
|