Metamath Proof Explorer


Theorem fsuppmapnn0fiubex

Description: If all functions of a finite set of functions over the nonnegative integers are finitely supported, then the support of all these functions is contained in a finite set of sequential integers starting at 0. (Contributed by AV, 2-Oct-2019)

Ref Expression
Assertion fsuppmapnn0fiubex M R 0 M Fin Z V f M finSupp Z f m 0 f M f supp Z 0 m

Proof

Step Hyp Ref Expression
1 0nn0 0 0
2 1 a1i = M f M f supp Z = 0 0
3 oveq2 m = 0 0 m = 0 0
4 3 sseq2d m = 0 f supp Z 0 m f supp Z 0 0
5 4 ralbidv m = 0 f M f supp Z 0 m f M f supp Z 0 0
6 5 adantl = M f M f supp Z = m = 0 f M f supp Z 0 m f M f supp Z 0 0
7 ral0 f f supp Z 0 0
8 raleq = M f f supp Z 0 0 f M f supp Z 0 0
9 7 8 mpbii = M f M f supp Z 0 0
10 0ss 0 0
11 sseq1 f supp Z = f supp Z 0 0 0 0
12 10 11 mpbiri f supp Z = f supp Z 0 0
13 12 ralimi f M f supp Z = f M f supp Z 0 0
14 9 13 jaoi = M f M f supp Z = f M f supp Z 0 0
15 2 6 14 rspcedvd = M f M f supp Z = m 0 f M f supp Z 0 m
16 15 2a1d = M f M f supp Z = M R 0 M Fin Z V f M finSupp Z f m 0 f M f supp Z 0 m
17 simplr ¬ = M f M f supp Z = M R 0 M Fin Z V f M finSupp Z f M R 0 M Fin Z V
18 simpr ¬ = M f M f supp Z = M R 0 M Fin Z V f M finSupp Z f f M finSupp Z f
19 ioran ¬ = M f M f supp Z = ¬ = M ¬ f M f supp Z =
20 oveq1 f = g f supp Z = g supp Z
21 20 eqeq1d f = g f supp Z = g supp Z =
22 21 cbvralvw f M f supp Z = g M g supp Z =
23 22 notbii ¬ f M f supp Z = ¬ g M g supp Z =
24 23 anbi2i ¬ = M ¬ f M f supp Z = ¬ = M ¬ g M g supp Z =
25 19 24 bitri ¬ = M f M f supp Z = ¬ = M ¬ g M g supp Z =
26 rexnal g M ¬ g supp Z = ¬ g M g supp Z =
27 df-ne g supp Z ¬ g supp Z =
28 27 bicomi ¬ g supp Z = g supp Z
29 28 rexbii g M ¬ g supp Z = g M g supp Z
30 26 29 sylbb1 ¬ g M g supp Z = g M g supp Z
31 25 30 simplbiim ¬ = M f M f supp Z = g M g supp Z
32 31 ad2antrr ¬ = M f M f supp Z = M R 0 M Fin Z V f M finSupp Z f g M g supp Z
33 iunn0 g M g supp Z g M supp Z g
34 32 33 sylib ¬ = M f M f supp Z = M R 0 M Fin Z V f M finSupp Z f g M supp Z g
35 18 34 jca ¬ = M f M f supp Z = M R 0 M Fin Z V f M finSupp Z f f M finSupp Z f g M supp Z g
36 oveq1 g = f g supp Z = f supp Z
37 36 cbviunv g M supp Z g = f M supp Z f
38 eqid sup g M supp Z g < = sup g M supp Z g <
39 37 38 fsuppmapnn0fiublem M R 0 M Fin Z V f M finSupp Z f g M supp Z g sup g M supp Z g < 0
40 17 35 39 sylc ¬ = M f M f supp Z = M R 0 M Fin Z V f M finSupp Z f sup g M supp Z g < 0
41 nfv f = M
42 nfra1 f f M f supp Z =
43 41 42 nfor f = M f M f supp Z =
44 43 nfn f ¬ = M f M f supp Z =
45 nfv f M R 0 M Fin Z V
46 44 45 nfan f ¬ = M f M f supp Z = M R 0 M Fin Z V
47 nfra1 f f M finSupp Z f
48 46 47 nfan f ¬ = M f M f supp Z = M R 0 M Fin Z V f M finSupp Z f
49 nfv f m = sup g M supp Z g <
50 48 49 nfan f ¬ = M f M f supp Z = M R 0 M Fin Z V f M finSupp Z f m = sup g M supp Z g <
51 oveq2 m = sup g M supp Z g < 0 m = 0 sup g M supp Z g <
52 51 sseq2d m = sup g M supp Z g < f supp Z 0 m f supp Z 0 sup g M supp Z g <
53 52 adantl ¬ = M f M f supp Z = M R 0 M Fin Z V f M finSupp Z f m = sup g M supp Z g < f supp Z 0 m f supp Z 0 sup g M supp Z g <
54 50 53 ralbid ¬ = M f M f supp Z = M R 0 M Fin Z V f M finSupp Z f m = sup g M supp Z g < f M f supp Z 0 m f M f supp Z 0 sup g M supp Z g <
55 rexnal f M ¬ f supp Z = ¬ f M f supp Z =
56 df-ne f supp Z ¬ f supp Z =
57 56 bicomi ¬ f supp Z = f supp Z
58 57 rexbii f M ¬ f supp Z = f M f supp Z
59 55 58 sylbb1 ¬ f M f supp Z = f M f supp Z
60 19 59 simplbiim ¬ = M f M f supp Z = f M f supp Z
61 60 ad2antrr ¬ = M f M f supp Z = M R 0 M Fin Z V f M finSupp Z f f M f supp Z
62 iunn0 f M f supp Z f M supp Z f
63 20 cbviunv f M supp Z f = g M supp Z g
64 63 neeq1i f M supp Z f g M supp Z g
65 62 64 bitri f M f supp Z g M supp Z g
66 61 65 sylib ¬ = M f M f supp Z = M R 0 M Fin Z V f M finSupp Z f g M supp Z g
67 18 66 jca ¬ = M f M f supp Z = M R 0 M Fin Z V f M finSupp Z f f M finSupp Z f g M supp Z g
68 37 38 fsuppmapnn0fiub M R 0 M Fin Z V f M finSupp Z f g M supp Z g f M f supp Z 0 sup g M supp Z g <
69 17 67 68 sylc ¬ = M f M f supp Z = M R 0 M Fin Z V f M finSupp Z f f M f supp Z 0 sup g M supp Z g <
70 40 54 69 rspcedvd ¬ = M f M f supp Z = M R 0 M Fin Z V f M finSupp Z f m 0 f M f supp Z 0 m
71 70 exp31 ¬ = M f M f supp Z = M R 0 M Fin Z V f M finSupp Z f m 0 f M f supp Z 0 m
72 16 71 pm2.61i M R 0 M Fin Z V f M finSupp Z f m 0 f M f supp Z 0 m