Step |
Hyp |
Ref |
Expression |
1 |
|
fsuppmapnn0fiub.u |
|
2 |
|
fsuppmapnn0fiub.s |
|
3 |
|
nfv |
|
4 |
|
nfra1 |
|
5 |
|
nfv |
|
6 |
4 5
|
nfan |
|
7 |
3 6
|
nfan |
|
8 |
|
suppssdm |
|
9 |
|
ssel2 |
|
10 |
|
elmapfn |
|
11 |
|
fndm |
|
12 |
|
eqimss |
|
13 |
11 12
|
syl |
|
14 |
9 10 13
|
3syl |
|
15 |
14
|
ex |
|
16 |
15
|
3ad2ant1 |
|
17 |
16
|
adantr |
|
18 |
17
|
imp |
|
19 |
8 18
|
sstrid |
|
20 |
19
|
ex |
|
21 |
7 20
|
ralrimi |
|
22 |
|
iunss |
|
23 |
21 22
|
sylibr |
|
24 |
1 23
|
eqsstrid |
|
25 |
|
ltso |
|
26 |
25
|
a1i |
|
27 |
|
simp2 |
|
28 |
|
id |
|
29 |
28
|
fsuppimpd |
|
30 |
29
|
ralimi |
|
31 |
30
|
adantr |
|
32 |
|
iunfi |
|
33 |
27 31 32
|
syl2an |
|
34 |
1 33
|
eqeltrid |
|
35 |
|
simprr |
|
36 |
9 10 11
|
3syl |
|
37 |
36
|
ex |
|
38 |
37
|
3ad2ant1 |
|
39 |
38
|
adantr |
|
40 |
39
|
imp |
|
41 |
|
nn0ssre |
|
42 |
40 41
|
eqsstrdi |
|
43 |
8 42
|
sstrid |
|
44 |
43
|
ex |
|
45 |
7 44
|
ralrimi |
|
46 |
1
|
sseq1i |
|
47 |
|
iunss |
|
48 |
46 47
|
bitri |
|
49 |
45 48
|
sylibr |
|
50 |
|
fisupcl |
|
51 |
2 50
|
eqeltrid |
|
52 |
26 34 35 49 51
|
syl13anc |
|
53 |
24 52
|
sseldd |
|
54 |
53
|
ex |
|