Metamath Proof Explorer


Theorem fsuppmapnn0fiublem

Description: Lemma for fsuppmapnn0fiub and fsuppmapnn0fiubex . (Contributed by AV, 2-Oct-2019)

Ref Expression
Hypotheses fsuppmapnn0fiub.u U = f M supp Z f
fsuppmapnn0fiub.s S = sup U <
Assertion fsuppmapnn0fiublem M R 0 M Fin Z V f M finSupp Z f U S 0

Proof

Step Hyp Ref Expression
1 fsuppmapnn0fiub.u U = f M supp Z f
2 fsuppmapnn0fiub.s S = sup U <
3 nfv f M R 0 M Fin Z V
4 nfra1 f f M finSupp Z f
5 nfv f U
6 4 5 nfan f f M finSupp Z f U
7 3 6 nfan f M R 0 M Fin Z V f M finSupp Z f U
8 suppssdm f supp Z dom f
9 ssel2 M R 0 f M f R 0
10 elmapfn f R 0 f Fn 0
11 fndm f Fn 0 dom f = 0
12 eqimss dom f = 0 dom f 0
13 11 12 syl f Fn 0 dom f 0
14 9 10 13 3syl M R 0 f M dom f 0
15 14 ex M R 0 f M dom f 0
16 15 3ad2ant1 M R 0 M Fin Z V f M dom f 0
17 16 adantr M R 0 M Fin Z V f M finSupp Z f U f M dom f 0
18 17 imp M R 0 M Fin Z V f M finSupp Z f U f M dom f 0
19 8 18 sstrid M R 0 M Fin Z V f M finSupp Z f U f M f supp Z 0
20 19 ex M R 0 M Fin Z V f M finSupp Z f U f M f supp Z 0
21 7 20 ralrimi M R 0 M Fin Z V f M finSupp Z f U f M f supp Z 0
22 iunss f M supp Z f 0 f M f supp Z 0
23 21 22 sylibr M R 0 M Fin Z V f M finSupp Z f U f M supp Z f 0
24 1 23 eqsstrid M R 0 M Fin Z V f M finSupp Z f U U 0
25 ltso < Or
26 25 a1i M R 0 M Fin Z V f M finSupp Z f U < Or
27 simp2 M R 0 M Fin Z V M Fin
28 id finSupp Z f finSupp Z f
29 28 fsuppimpd finSupp Z f f supp Z Fin
30 29 ralimi f M finSupp Z f f M f supp Z Fin
31 30 adantr f M finSupp Z f U f M f supp Z Fin
32 iunfi M Fin f M f supp Z Fin f M supp Z f Fin
33 27 31 32 syl2an M R 0 M Fin Z V f M finSupp Z f U f M supp Z f Fin
34 1 33 eqeltrid M R 0 M Fin Z V f M finSupp Z f U U Fin
35 simprr M R 0 M Fin Z V f M finSupp Z f U U
36 9 10 11 3syl M R 0 f M dom f = 0
37 36 ex M R 0 f M dom f = 0
38 37 3ad2ant1 M R 0 M Fin Z V f M dom f = 0
39 38 adantr M R 0 M Fin Z V f M finSupp Z f U f M dom f = 0
40 39 imp M R 0 M Fin Z V f M finSupp Z f U f M dom f = 0
41 nn0ssre 0
42 40 41 eqsstrdi M R 0 M Fin Z V f M finSupp Z f U f M dom f
43 8 42 sstrid M R 0 M Fin Z V f M finSupp Z f U f M f supp Z
44 43 ex M R 0 M Fin Z V f M finSupp Z f U f M f supp Z
45 7 44 ralrimi M R 0 M Fin Z V f M finSupp Z f U f M f supp Z
46 1 sseq1i U f M supp Z f
47 iunss f M supp Z f f M f supp Z
48 46 47 bitri U f M f supp Z
49 45 48 sylibr M R 0 M Fin Z V f M finSupp Z f U U
50 fisupcl < Or U Fin U U sup U < U
51 2 50 eqeltrid < Or U Fin U U S U
52 26 34 35 49 51 syl13anc M R 0 M Fin Z V f M finSupp Z f U S U
53 24 52 sseldd M R 0 M Fin Z V f M finSupp Z f U S 0
54 53 ex M R 0 M Fin Z V f M finSupp Z f U S 0