Metamath Proof Explorer


Theorem fsuppmapnn0ub

Description: If a function over the nonnegative integers is finitely supported, then there is an upper bound for the arguments resulting in nonzero values. (Contributed by AV, 6-Oct-2019)

Ref Expression
Assertion fsuppmapnn0ub F R 0 Z V finSupp Z F m 0 x 0 m < x F x = Z

Proof

Step Hyp Ref Expression
1 simpr F R 0 Z V finSupp Z F finSupp Z F
2 1 fsuppimpd F R 0 Z V finSupp Z F F supp Z Fin
3 2 ex F R 0 Z V finSupp Z F F supp Z Fin
4 elmapfn F R 0 F Fn 0
5 4 adantr F R 0 Z V F Fn 0
6 nn0ex 0 V
7 6 a1i F R 0 Z V 0 V
8 simpr F R 0 Z V Z V
9 suppvalfn F Fn 0 0 V Z V F supp Z = x 0 | F x Z
10 5 7 8 9 syl3anc F R 0 Z V F supp Z = x 0 | F x Z
11 10 eleq1d F R 0 Z V F supp Z Fin x 0 | F x Z Fin
12 rabssnn0fi x 0 | F x Z Fin m 0 x 0 m < x ¬ F x Z
13 nne ¬ F x Z F x = Z
14 13 imbi2i m < x ¬ F x Z m < x F x = Z
15 14 ralbii x 0 m < x ¬ F x Z x 0 m < x F x = Z
16 15 rexbii m 0 x 0 m < x ¬ F x Z m 0 x 0 m < x F x = Z
17 12 16 sylbb x 0 | F x Z Fin m 0 x 0 m < x F x = Z
18 11 17 syl6bi F R 0 Z V F supp Z Fin m 0 x 0 m < x F x = Z
19 3 18 syld F R 0 Z V finSupp Z F m 0 x 0 m < x F x = Z