Metamath Proof Explorer


Theorem fsuppmptdm

Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 7-Jun-2019)

Ref Expression
Hypotheses fsuppmptdm.f F = x A Y
fsuppmptdm.a φ A Fin
fsuppmptdm.y φ x A Y V
fsuppmptdm.z φ Z W
Assertion fsuppmptdm φ finSupp Z F

Proof

Step Hyp Ref Expression
1 fsuppmptdm.f F = x A Y
2 fsuppmptdm.a φ A Fin
3 fsuppmptdm.y φ x A Y V
4 fsuppmptdm.z φ Z W
5 3 1 fmptd φ F : A V
6 5 2 4 fdmfifsupp φ finSupp Z F