Metamath Proof Explorer


Theorem fsuppss

Description: A subset of a finitely supported function is a finitely supported function. (Contributed by SN, 8-Mar-2025)

Ref Expression
Hypotheses fsuppss.1 φ F G
fsuppss.2 φ finSupp Z G
Assertion fsuppss φ finSupp Z F

Proof

Step Hyp Ref Expression
1 fsuppss.1 φ F G
2 fsuppss.2 φ finSupp Z G
3 relfsupp Rel finSupp
4 brrelex1 Rel finSupp finSupp Z G G V
5 3 2 4 sylancr φ G V
6 5 1 ssexd φ F V
7 brrelex2 Rel finSupp finSupp Z G Z V
8 3 2 7 sylancr φ Z V
9 2 fsuppfund φ Fun G
10 funss F G Fun G Fun F
11 1 9 10 sylc φ Fun F
12 funsssuppss Fun G F G G V F supp Z G supp Z
13 9 1 5 12 syl3anc φ F supp Z G supp Z
14 6 8 11 2 13 fsuppsssuppgd φ finSupp Z F