Metamath Proof Explorer


Theorem fsuppssov1

Description: Formula building theorem for finite support: operator with left annihilator. Finite support version of suppssov1 . (Contributed by SN, 26-Apr-2025)

Ref Expression
Hypotheses fsuppssov1.s φ finSupp Y x D A
fsuppssov1.o φ v R Y O v = Z
fsuppssov1.a φ x D A V
fsuppssov1.b φ x D B R
fsuppssov1.z φ Z W
Assertion fsuppssov1 φ finSupp Z x D A O B

Proof

Step Hyp Ref Expression
1 fsuppssov1.s φ finSupp Y x D A
2 fsuppssov1.o φ v R Y O v = Z
3 fsuppssov1.a φ x D A V
4 fsuppssov1.b φ x D B R
5 fsuppssov1.z φ Z W
6 relfsupp Rel finSupp
7 6 brrelex1i finSupp Y x D A x D A V
8 1 7 syl φ x D A V
9 3 fmpttd φ x D A : D V
10 dmfex x D A V x D A : D V D V
11 8 9 10 syl2anc φ D V
12 11 mptexd φ x D A O B V
13 funmpt Fun x D A O B
14 13 a1i φ Fun x D A O B
15 ssidd φ x D A supp Y x D A supp Y
16 6 brrelex2i finSupp Y x D A Y V
17 1 16 syl φ Y V
18 15 2 3 4 17 suppssov1 φ x D A O B supp Z x D A supp Y
19 12 5 14 1 18 fsuppsssuppgd φ finSupp Z x D A O B