Metamath Proof Explorer


Theorem fsuppsssupp

Description: If the support of a function is a subset of the support of a finitely supported function, the function is finitely supported. (Contributed by AV, 2-Jul-2019) (Proof shortened by AV, 15-Jul-2019)

Ref Expression
Assertion fsuppsssupp G V Fun G finSupp Z F G supp Z F supp Z finSupp Z G

Proof

Step Hyp Ref Expression
1 simpll G V Fun G finSupp Z F G supp Z F supp Z G V
2 simplr G V Fun G finSupp Z F G supp Z F supp Z Fun G
3 relfsupp Rel finSupp
4 3 brrelex2i finSupp Z F Z V
5 4 ad2antrl G V Fun G finSupp Z F G supp Z F supp Z Z V
6 id finSupp Z F finSupp Z F
7 6 fsuppimpd finSupp Z F F supp Z Fin
8 7 anim1i finSupp Z F G supp Z F supp Z F supp Z Fin G supp Z F supp Z
9 8 adantl G V Fun G finSupp Z F G supp Z F supp Z F supp Z Fin G supp Z F supp Z
10 suppssfifsupp G V Fun G Z V F supp Z Fin G supp Z F supp Z finSupp Z G
11 1 2 5 9 10 syl31anc G V Fun G finSupp Z F G supp Z F supp Z finSupp Z G