Metamath Proof Explorer


Theorem fsuppsssuppgd

Description: If the support of a function is a subset of a finite support, it is finite. Deduction associated with fsuppsssupp . (Contributed by SN, 6-Mar-2025)

Ref Expression
Hypotheses fsuppsssuppgd.g φ G V
fsuppsssuppgd.z φ Z W
fsuppsssuppgd.1 φ Fun G
fsuppsssuppgd.2 φ finSupp O F
fsuppsssuppgd.3 φ G supp Z F supp O
Assertion fsuppsssuppgd φ finSupp Z G

Proof

Step Hyp Ref Expression
1 fsuppsssuppgd.g φ G V
2 fsuppsssuppgd.z φ Z W
3 fsuppsssuppgd.1 φ Fun G
4 fsuppsssuppgd.2 φ finSupp O F
5 fsuppsssuppgd.3 φ G supp Z F supp O
6 4 fsuppimpd φ F supp O Fin
7 suppssfifsupp G V Fun G Z W F supp O Fin G supp Z F supp O finSupp Z G
8 1 3 2 6 5 7 syl32anc φ finSupp Z G