Description: If the support of a function is a subset of a finite support, it is finite. Deduction associated with fsuppsssupp . (Contributed by SN, 6-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsuppsssuppgd.g | ||
fsuppsssuppgd.z | |||
fsuppsssuppgd.1 | |||
fsuppsssuppgd.2 | |||
fsuppsssuppgd.3 | |||
Assertion | fsuppsssuppgd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppsssuppgd.g | ||
2 | fsuppsssuppgd.z | ||
3 | fsuppsssuppgd.1 | ||
4 | fsuppsssuppgd.2 | ||
5 | fsuppsssuppgd.3 | ||
6 | 4 | fsuppimpd | |
7 | suppssfifsupp | ||
8 | 1 3 2 6 5 7 | syl32anc |