Description: The union of two finitely supported functions is finitely supported (but not necessarily a function!). (Contributed by AV, 3-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsuppun.f | |
|
fsuppun.g | |
||
Assertion | fsuppun | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppun.f | |
|
2 | fsuppun.g | |
|
3 | cnvun | |
|
4 | 3 | imaeq1i | |
5 | imaundir | |
|
6 | 4 5 | eqtri | |
7 | unexb | |
|
8 | simpl | |
|
9 | 7 8 | sylbir | |
10 | suppimacnv | |
|
11 | 9 10 | sylan | |
12 | 11 | eqcomd | |
13 | 12 | adantr | |
14 | 1 | fsuppimpd | |
15 | 14 | adantl | |
16 | 13 15 | eqeltrd | |
17 | simpr | |
|
18 | 7 17 | sylbir | |
19 | suppimacnv | |
|
20 | 19 | eqcomd | |
21 | 18 20 | sylan | |
22 | 21 | adantr | |
23 | 2 | fsuppimpd | |
24 | 23 | adantl | |
25 | 22 24 | eqeltrd | |
26 | unfi | |
|
27 | 16 25 26 | syl2anc | |
28 | 6 27 | eqeltrid | |
29 | suppimacnv | |
|
30 | 29 | eleq1d | |
31 | 30 | adantr | |
32 | 28 31 | mpbird | |
33 | 32 | ex | |
34 | supp0prc | |
|
35 | 0fi | |
|
36 | 34 35 | eqeltrdi | |
37 | 36 | a1d | |
38 | 33 37 | pm2.61i | |