Metamath Proof Explorer


Theorem fsuppun

Description: The union of two finitely supported functions is finitely supported (but not necessarily a function!). (Contributed by AV, 3-Jun-2019)

Ref Expression
Hypotheses fsuppun.f φ finSupp Z F
fsuppun.g φ finSupp Z G
Assertion fsuppun φ F G supp Z Fin

Proof

Step Hyp Ref Expression
1 fsuppun.f φ finSupp Z F
2 fsuppun.g φ finSupp Z G
3 cnvun F G -1 = F -1 G -1
4 3 imaeq1i F G -1 V Z = F -1 G -1 V Z
5 imaundir F -1 G -1 V Z = F -1 V Z G -1 V Z
6 4 5 eqtri F G -1 V Z = F -1 V Z G -1 V Z
7 unexb F V G V F G V
8 simpl F V G V F V
9 7 8 sylbir F G V F V
10 suppimacnv F V Z V F supp Z = F -1 V Z
11 9 10 sylan F G V Z V F supp Z = F -1 V Z
12 11 eqcomd F G V Z V F -1 V Z = F supp Z
13 12 adantr F G V Z V φ F -1 V Z = F supp Z
14 1 fsuppimpd φ F supp Z Fin
15 14 adantl F G V Z V φ F supp Z Fin
16 13 15 eqeltrd F G V Z V φ F -1 V Z Fin
17 simpr F V G V G V
18 7 17 sylbir F G V G V
19 suppimacnv G V Z V G supp Z = G -1 V Z
20 19 eqcomd G V Z V G -1 V Z = G supp Z
21 18 20 sylan F G V Z V G -1 V Z = G supp Z
22 21 adantr F G V Z V φ G -1 V Z = G supp Z
23 2 fsuppimpd φ G supp Z Fin
24 23 adantl F G V Z V φ G supp Z Fin
25 22 24 eqeltrd F G V Z V φ G -1 V Z Fin
26 unfi F -1 V Z Fin G -1 V Z Fin F -1 V Z G -1 V Z Fin
27 16 25 26 syl2anc F G V Z V φ F -1 V Z G -1 V Z Fin
28 6 27 eqeltrid F G V Z V φ F G -1 V Z Fin
29 suppimacnv F G V Z V F G supp Z = F G -1 V Z
30 29 eleq1d F G V Z V F G supp Z Fin F G -1 V Z Fin
31 30 adantr F G V Z V φ F G supp Z Fin F G -1 V Z Fin
32 28 31 mpbird F G V Z V φ F G supp Z Fin
33 32 ex F G V Z V φ F G supp Z Fin
34 supp0prc ¬ F G V Z V F G supp Z =
35 0fin Fin
36 34 35 eqeltrdi ¬ F G V Z V F G supp Z Fin
37 36 a1d ¬ F G V Z V φ F G supp Z Fin
38 33 37 pm2.61i φ F G supp Z Fin