Metamath Proof Explorer


Theorem fsuppxpfi

Description: The cartesian product of two finitely supported functions is finite. (Contributed by AV, 17-Jul-2019)

Ref Expression
Assertion fsuppxpfi finSupp Z F finSupp Z G supp Z F × supp Z G Fin

Proof

Step Hyp Ref Expression
1 id finSupp Z F finSupp Z F
2 1 fsuppimpd finSupp Z F F supp Z Fin
3 id finSupp Z G finSupp Z G
4 3 fsuppimpd finSupp Z G G supp Z Fin
5 xpfi F supp Z Fin G supp Z Fin supp Z F × supp Z G Fin
6 2 4 5 syl2an finSupp Z F finSupp Z G supp Z F × supp Z G Fin