Metamath Proof Explorer


Theorem fta

Description: The Fundamental Theorem of Algebra. Any polynomial with positive degree (i.e. non-constant) has a root. This is Metamath 100 proof #2. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion fta F Poly S deg F z F z = 0

Proof

Step Hyp Ref Expression
1 eqid coeff F = coeff F
2 eqid deg F = deg F
3 simpl F Poly S deg F F Poly S
4 simpr F Poly S deg F deg F
5 eqid if if 1 s s 1 F 0 coeff F deg F 2 F 0 coeff F deg F 2 if 1 s s 1 = if if 1 s s 1 F 0 coeff F deg F 2 F 0 coeff F deg F 2 if 1 s s 1
6 eqid F 0 coeff F deg F 2 = F 0 coeff F deg F 2
7 1 2 3 4 5 6 ftalem2 F Poly S deg F r + y r < y F 0 < F y
8 simpll F Poly S deg F r + y r < y F 0 < F y F Poly S
9 simplr F Poly S deg F r + y r < y F 0 < F y deg F
10 eqid s | s r = s | s r
11 eqid TopOpen fld = TopOpen fld
12 simprl F Poly S deg F r + y r < y F 0 < F y r +
13 simprr F Poly S deg F r + y r < y F 0 < F y y r < y F 0 < F y
14 fveq2 y = x y = x
15 14 breq2d y = x r < y r < x
16 2fveq3 y = x F y = F x
17 16 breq2d y = x F 0 < F y F 0 < F x
18 15 17 imbi12d y = x r < y F 0 < F y r < x F 0 < F x
19 18 cbvralvw y r < y F 0 < F y x r < x F 0 < F x
20 13 19 sylib F Poly S deg F r + y r < y F 0 < F y x r < x F 0 < F x
21 1 2 8 9 10 11 12 20 ftalem3 F Poly S deg F r + y r < y F 0 < F y z x F z F x
22 7 21 rexlimddv F Poly S deg F z x F z F x
23 simpll F Poly S deg F z F z 0 F Poly S
24 simplr F Poly S deg F z F z 0 deg F
25 simprl F Poly S deg F z F z 0 z
26 simprr F Poly S deg F z F z 0 F z 0
27 1 2 23 24 25 26 ftalem7 F Poly S deg F z F z 0 ¬ x F z F x
28 27 expr F Poly S deg F z F z 0 ¬ x F z F x
29 28 necon4ad F Poly S deg F z x F z F x F z = 0
30 29 reximdva F Poly S deg F z x F z F x z F z = 0
31 22 30 mpd F Poly S deg F z F z = 0