Metamath Proof Explorer


Theorem fta1blem

Description: Lemma for fta1b . (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses fta1b.p P = Poly 1 R
fta1b.b B = Base P
fta1b.d D = deg 1 R
fta1b.o O = eval 1 R
fta1b.w W = 0 R
fta1b.z 0 ˙ = 0 P
fta1blem.k K = Base R
fta1blem.t × ˙ = R
fta1blem.x X = var 1 R
fta1blem.s · ˙ = P
fta1blem.1 φ R CRing
fta1blem.2 φ M K
fta1blem.3 φ N K
fta1blem.4 φ M × ˙ N = W
fta1blem.5 φ M W
fta1blem.6 φ M · ˙ X B 0 ˙ O M · ˙ X -1 W D M · ˙ X
Assertion fta1blem φ N = W

Proof

Step Hyp Ref Expression
1 fta1b.p P = Poly 1 R
2 fta1b.b B = Base P
3 fta1b.d D = deg 1 R
4 fta1b.o O = eval 1 R
5 fta1b.w W = 0 R
6 fta1b.z 0 ˙ = 0 P
7 fta1blem.k K = Base R
8 fta1blem.t × ˙ = R
9 fta1blem.x X = var 1 R
10 fta1blem.s · ˙ = P
11 fta1blem.1 φ R CRing
12 fta1blem.2 φ M K
13 fta1blem.3 φ N K
14 fta1blem.4 φ M × ˙ N = W
15 fta1blem.5 φ M W
16 fta1blem.6 φ M · ˙ X B 0 ˙ O M · ˙ X -1 W D M · ˙ X
17 4 9 7 1 2 11 13 evl1vard φ X B O X N = N
18 4 1 7 2 11 13 17 12 10 8 evl1vsd φ M · ˙ X B O M · ˙ X N = M × ˙ N
19 18 simprd φ O M · ˙ X N = M × ˙ N
20 19 14 eqtrd φ O M · ˙ X N = W
21 eqid R 𝑠 K = R 𝑠 K
22 eqid Base R 𝑠 K = Base R 𝑠 K
23 7 fvexi K V
24 23 a1i φ K V
25 4 1 21 7 evl1rhm R CRing O P RingHom R 𝑠 K
26 11 25 syl φ O P RingHom R 𝑠 K
27 2 22 rhmf O P RingHom R 𝑠 K O : B Base R 𝑠 K
28 26 27 syl φ O : B Base R 𝑠 K
29 18 simpld φ M · ˙ X B
30 28 29 ffvelrnd φ O M · ˙ X Base R 𝑠 K
31 21 7 22 11 24 30 pwselbas φ O M · ˙ X : K K
32 31 ffnd φ O M · ˙ X Fn K
33 fniniseg O M · ˙ X Fn K N O M · ˙ X -1 W N K O M · ˙ X N = W
34 32 33 syl φ N O M · ˙ X -1 W N K O M · ˙ X N = W
35 13 20 34 mpbir2and φ N O M · ˙ X -1 W
36 fvex O M · ˙ X V
37 36 cnvex O M · ˙ X -1 V
38 37 imaex O M · ˙ X -1 W V
39 38 a1i φ O M · ˙ X -1 W V
40 1nn0 1 0
41 40 a1i φ 1 0
42 crngring R CRing R Ring
43 11 42 syl φ R Ring
44 9 1 2 vr1cl R Ring X B
45 43 44 syl φ X B
46 eqid mulGrp P = mulGrp P
47 46 2 mgpbas B = Base mulGrp P
48 eqid mulGrp P = mulGrp P
49 47 48 mulg1 X B 1 mulGrp P X = X
50 45 49 syl φ 1 mulGrp P X = X
51 50 oveq2d φ M · ˙ 1 mulGrp P X = M · ˙ X
52 5 7 1 9 10 46 48 coe1tmfv1 R Ring M K 1 0 coe 1 M · ˙ 1 mulGrp P X 1 = M
53 43 12 41 52 syl3anc φ coe 1 M · ˙ 1 mulGrp P X 1 = M
54 1 6 5 coe1z R Ring coe 1 0 ˙ = 0 × W
55 43 54 syl φ coe 1 0 ˙ = 0 × W
56 55 fveq1d φ coe 1 0 ˙ 1 = 0 × W 1
57 5 fvexi W V
58 57 fvconst2 1 0 0 × W 1 = W
59 40 58 ax-mp 0 × W 1 = W
60 56 59 eqtrdi φ coe 1 0 ˙ 1 = W
61 15 53 60 3netr4d φ coe 1 M · ˙ 1 mulGrp P X 1 coe 1 0 ˙ 1
62 fveq2 M · ˙ 1 mulGrp P X = 0 ˙ coe 1 M · ˙ 1 mulGrp P X = coe 1 0 ˙
63 62 fveq1d M · ˙ 1 mulGrp P X = 0 ˙ coe 1 M · ˙ 1 mulGrp P X 1 = coe 1 0 ˙ 1
64 63 necon3i coe 1 M · ˙ 1 mulGrp P X 1 coe 1 0 ˙ 1 M · ˙ 1 mulGrp P X 0 ˙
65 61 64 syl φ M · ˙ 1 mulGrp P X 0 ˙
66 51 65 eqnetrrd φ M · ˙ X 0 ˙
67 eldifsn M · ˙ X B 0 ˙ M · ˙ X B M · ˙ X 0 ˙
68 29 66 67 sylanbrc φ M · ˙ X B 0 ˙
69 68 16 mpd φ O M · ˙ X -1 W D M · ˙ X
70 51 fveq2d φ D M · ˙ 1 mulGrp P X = D M · ˙ X
71 3 7 1 9 10 46 48 5 deg1tm R Ring M K M W 1 0 D M · ˙ 1 mulGrp P X = 1
72 43 12 15 41 71 syl121anc φ D M · ˙ 1 mulGrp P X = 1
73 70 72 eqtr3d φ D M · ˙ X = 1
74 69 73 breqtrd φ O M · ˙ X -1 W 1
75 hashbnd O M · ˙ X -1 W V 1 0 O M · ˙ X -1 W 1 O M · ˙ X -1 W Fin
76 39 41 74 75 syl3anc φ O M · ˙ X -1 W Fin
77 7 5 ring0cl R Ring W K
78 43 77 syl φ W K
79 eqid algSc P = algSc P
80 1 79 7 2 ply1sclf R Ring algSc P : K B
81 43 80 syl φ algSc P : K B
82 81 12 ffvelrnd φ algSc P M B
83 eqid P = P
84 eqid R 𝑠 K = R 𝑠 K
85 2 83 84 rhmmul O P RingHom R 𝑠 K algSc P M B X B O algSc P M P X = O algSc P M R 𝑠 K O X
86 26 82 45 85 syl3anc φ O algSc P M P X = O algSc P M R 𝑠 K O X
87 1 ply1assa R CRing P AssAlg
88 11 87 syl φ P AssAlg
89 1 ply1sca R CRing R = Scalar P
90 11 89 syl φ R = Scalar P
91 90 fveq2d φ Base R = Base Scalar P
92 7 91 syl5eq φ K = Base Scalar P
93 12 92 eleqtrd φ M Base Scalar P
94 eqid Scalar P = Scalar P
95 eqid Base Scalar P = Base Scalar P
96 79 94 95 2 83 10 asclmul1 P AssAlg M Base Scalar P X B algSc P M P X = M · ˙ X
97 88 93 45 96 syl3anc φ algSc P M P X = M · ˙ X
98 97 fveq2d φ O algSc P M P X = O M · ˙ X
99 28 82 ffvelrnd φ O algSc P M Base R 𝑠 K
100 28 45 ffvelrnd φ O X Base R 𝑠 K
101 21 22 11 24 99 100 8 84 pwsmulrval φ O algSc P M R 𝑠 K O X = O algSc P M × ˙ f O X
102 4 1 7 79 evl1sca R CRing M K O algSc P M = K × M
103 11 12 102 syl2anc φ O algSc P M = K × M
104 4 9 7 evl1var R CRing O X = I K
105 11 104 syl φ O X = I K
106 103 105 oveq12d φ O algSc P M × ˙ f O X = K × M × ˙ f I K
107 101 106 eqtrd φ O algSc P M R 𝑠 K O X = K × M × ˙ f I K
108 86 98 107 3eqtr3d φ O M · ˙ X = K × M × ˙ f I K
109 108 fveq1d φ O M · ˙ X W = K × M × ˙ f I K W
110 fnconstg M K K × M Fn K
111 12 110 syl φ K × M Fn K
112 fnresi I K Fn K
113 112 a1i φ I K Fn K
114 fnfvof K × M Fn K I K Fn K K V W K K × M × ˙ f I K W = K × M W × ˙ I K W
115 111 113 24 78 114 syl22anc φ K × M × ˙ f I K W = K × M W × ˙ I K W
116 fvconst2g M K W K K × M W = M
117 12 78 116 syl2anc φ K × M W = M
118 fvresi W K I K W = W
119 78 118 syl φ I K W = W
120 117 119 oveq12d φ K × M W × ˙ I K W = M × ˙ W
121 7 8 5 ringrz R Ring M K M × ˙ W = W
122 43 12 121 syl2anc φ M × ˙ W = W
123 120 122 eqtrd φ K × M W × ˙ I K W = W
124 115 123 eqtrd φ K × M × ˙ f I K W = W
125 109 124 eqtrd φ O M · ˙ X W = W
126 fniniseg O M · ˙ X Fn K W O M · ˙ X -1 W W K O M · ˙ X W = W
127 32 126 syl φ W O M · ˙ X -1 W W K O M · ˙ X W = W
128 78 125 127 mpbir2and φ W O M · ˙ X -1 W
129 128 snssd φ W O M · ˙ X -1 W
130 hashsng W K W = 1
131 78 130 syl φ W = 1
132 ssdomg O M · ˙ X -1 W V W O M · ˙ X -1 W W O M · ˙ X -1 W
133 38 129 132 mpsyl φ W O M · ˙ X -1 W
134 snfi W Fin
135 hashdom W Fin O M · ˙ X -1 W V W O M · ˙ X -1 W W O M · ˙ X -1 W
136 134 38 135 mp2an W O M · ˙ X -1 W W O M · ˙ X -1 W
137 133 136 sylibr φ W O M · ˙ X -1 W
138 131 137 eqbrtrrd φ 1 O M · ˙ X -1 W
139 hashcl O M · ˙ X -1 W Fin O M · ˙ X -1 W 0
140 76 139 syl φ O M · ˙ X -1 W 0
141 140 nn0red φ O M · ˙ X -1 W
142 1re 1
143 letri3 O M · ˙ X -1 W 1 O M · ˙ X -1 W = 1 O M · ˙ X -1 W 1 1 O M · ˙ X -1 W
144 141 142 143 sylancl φ O M · ˙ X -1 W = 1 O M · ˙ X -1 W 1 1 O M · ˙ X -1 W
145 74 138 144 mpbir2and φ O M · ˙ X -1 W = 1
146 131 145 eqtr4d φ W = O M · ˙ X -1 W
147 hashen W Fin O M · ˙ X -1 W Fin W = O M · ˙ X -1 W W O M · ˙ X -1 W
148 134 76 147 sylancr φ W = O M · ˙ X -1 W W O M · ˙ X -1 W
149 146 148 mpbid φ W O M · ˙ X -1 W
150 fisseneq O M · ˙ X -1 W Fin W O M · ˙ X -1 W W O M · ˙ X -1 W W = O M · ˙ X -1 W
151 76 129 149 150 syl3anc φ W = O M · ˙ X -1 W
152 35 151 eleqtrrd φ N W
153 elsni N W N = W
154 152 153 syl φ N = W