Metamath Proof Explorer


Theorem fta1g

Description: The one-sided fundamental theorem of algebra. A polynomial of degree n has at most n roots. Unlike the real fundamental theorem fta , which is only true in CC and other algebraically closed fields, this is true in any integral domain. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses fta1g.p P = Poly 1 R
fta1g.b B = Base P
fta1g.d D = deg 1 R
fta1g.o O = eval 1 R
fta1g.w W = 0 R
fta1g.z 0 ˙ = 0 P
fta1g.1 φ R IDomn
fta1g.2 φ F B
fta1g.3 φ F 0 ˙
Assertion fta1g φ O F -1 W D F

Proof

Step Hyp Ref Expression
1 fta1g.p P = Poly 1 R
2 fta1g.b B = Base P
3 fta1g.d D = deg 1 R
4 fta1g.o O = eval 1 R
5 fta1g.w W = 0 R
6 fta1g.z 0 ˙ = 0 P
7 fta1g.1 φ R IDomn
8 fta1g.2 φ F B
9 fta1g.3 φ F 0 ˙
10 eqid D F = D F
11 fveqeq2 f = F D f = D F D F = D F
12 fveq2 f = F O f = O F
13 12 cnveqd f = F O f -1 = O F -1
14 13 imaeq1d f = F O f -1 W = O F -1 W
15 14 fveq2d f = F O f -1 W = O F -1 W
16 fveq2 f = F D f = D F
17 15 16 breq12d f = F O f -1 W D f O F -1 W D F
18 11 17 imbi12d f = F D f = D F O f -1 W D f D F = D F O F -1 W D F
19 isidom R IDomn R CRing R Domn
20 19 simplbi R IDomn R CRing
21 crngring R CRing R Ring
22 7 20 21 3syl φ R Ring
23 3 1 6 2 deg1nn0cl R Ring F B F 0 ˙ D F 0
24 22 8 9 23 syl3anc φ D F 0
25 eqeq2 x = 0 D f = x D f = 0
26 25 imbi1d x = 0 D f = x O f -1 W D f D f = 0 O f -1 W D f
27 26 ralbidv x = 0 f B D f = x O f -1 W D f f B D f = 0 O f -1 W D f
28 27 imbi2d x = 0 R IDomn f B D f = x O f -1 W D f R IDomn f B D f = 0 O f -1 W D f
29 eqeq2 x = d D f = x D f = d
30 29 imbi1d x = d D f = x O f -1 W D f D f = d O f -1 W D f
31 30 ralbidv x = d f B D f = x O f -1 W D f f B D f = d O f -1 W D f
32 31 imbi2d x = d R IDomn f B D f = x O f -1 W D f R IDomn f B D f = d O f -1 W D f
33 eqeq2 x = d + 1 D f = x D f = d + 1
34 33 imbi1d x = d + 1 D f = x O f -1 W D f D f = d + 1 O f -1 W D f
35 34 ralbidv x = d + 1 f B D f = x O f -1 W D f f B D f = d + 1 O f -1 W D f
36 35 imbi2d x = d + 1 R IDomn f B D f = x O f -1 W D f R IDomn f B D f = d + 1 O f -1 W D f
37 eqeq2 x = D F D f = x D f = D F
38 37 imbi1d x = D F D f = x O f -1 W D f D f = D F O f -1 W D f
39 38 ralbidv x = D F f B D f = x O f -1 W D f f B D f = D F O f -1 W D f
40 39 imbi2d x = D F R IDomn f B D f = x O f -1 W D f R IDomn f B D f = D F O f -1 W D f
41 simprr R IDomn f B D f = 0 D f = 0
42 0nn0 0 0
43 41 42 eqeltrdi R IDomn f B D f = 0 D f 0
44 20 21 syl R IDomn R Ring
45 simpl f B D f = 0 f B
46 3 1 6 2 deg1nn0clb R Ring f B f 0 ˙ D f 0
47 44 45 46 syl2an R IDomn f B D f = 0 f 0 ˙ D f 0
48 43 47 mpbird R IDomn f B D f = 0 f 0 ˙
49 simplrr R IDomn f B D f = 0 x O f -1 W D f = 0
50 0le0 0 0
51 49 50 eqbrtrdi R IDomn f B D f = 0 x O f -1 W D f 0
52 44 ad2antrr R IDomn f B D f = 0 x O f -1 W R Ring
53 simplrl R IDomn f B D f = 0 x O f -1 W f B
54 eqid algSc P = algSc P
55 3 1 2 54 deg1le0 R Ring f B D f 0 f = algSc P coe 1 f 0
56 52 53 55 syl2anc R IDomn f B D f = 0 x O f -1 W D f 0 f = algSc P coe 1 f 0
57 51 56 mpbid R IDomn f B D f = 0 x O f -1 W f = algSc P coe 1 f 0
58 57 fveq2d R IDomn f B D f = 0 x O f -1 W O f = O algSc P coe 1 f 0
59 20 adantr R IDomn f B D f = 0 R CRing
60 59 adantr R IDomn f B D f = 0 x O f -1 W R CRing
61 eqid coe 1 f = coe 1 f
62 eqid Base R = Base R
63 61 2 1 62 coe1f f B coe 1 f : 0 Base R
64 53 63 syl R IDomn f B D f = 0 x O f -1 W coe 1 f : 0 Base R
65 ffvelrn coe 1 f : 0 Base R 0 0 coe 1 f 0 Base R
66 64 42 65 sylancl R IDomn f B D f = 0 x O f -1 W coe 1 f 0 Base R
67 4 1 62 54 evl1sca R CRing coe 1 f 0 Base R O algSc P coe 1 f 0 = Base R × coe 1 f 0
68 60 66 67 syl2anc R IDomn f B D f = 0 x O f -1 W O algSc P coe 1 f 0 = Base R × coe 1 f 0
69 58 68 eqtrd R IDomn f B D f = 0 x O f -1 W O f = Base R × coe 1 f 0
70 69 fveq1d R IDomn f B D f = 0 x O f -1 W O f x = Base R × coe 1 f 0 x
71 eqid R 𝑠 Base R = R 𝑠 Base R
72 eqid Base R 𝑠 Base R = Base R 𝑠 Base R
73 simpl R IDomn f B D f = 0 R IDomn
74 fvexd R IDomn f B D f = 0 Base R V
75 4 1 71 62 evl1rhm R CRing O P RingHom R 𝑠 Base R
76 2 72 rhmf O P RingHom R 𝑠 Base R O : B Base R 𝑠 Base R
77 59 75 76 3syl R IDomn f B D f = 0 O : B Base R 𝑠 Base R
78 simprl R IDomn f B D f = 0 f B
79 77 78 ffvelrnd R IDomn f B D f = 0 O f Base R 𝑠 Base R
80 71 62 72 73 74 79 pwselbas R IDomn f B D f = 0 O f : Base R Base R
81 ffn O f : Base R Base R O f Fn Base R
82 fniniseg O f Fn Base R x O f -1 W x Base R O f x = W
83 80 81 82 3syl R IDomn f B D f = 0 x O f -1 W x Base R O f x = W
84 83 simplbda R IDomn f B D f = 0 x O f -1 W O f x = W
85 83 simprbda R IDomn f B D f = 0 x O f -1 W x Base R
86 fvex coe 1 f 0 V
87 86 fvconst2 x Base R Base R × coe 1 f 0 x = coe 1 f 0
88 85 87 syl R IDomn f B D f = 0 x O f -1 W Base R × coe 1 f 0 x = coe 1 f 0
89 70 84 88 3eqtr3rd R IDomn f B D f = 0 x O f -1 W coe 1 f 0 = W
90 89 fveq2d R IDomn f B D f = 0 x O f -1 W algSc P coe 1 f 0 = algSc P W
91 1 54 5 6 ply1scl0 R Ring algSc P W = 0 ˙
92 52 91 syl R IDomn f B D f = 0 x O f -1 W algSc P W = 0 ˙
93 57 90 92 3eqtrd R IDomn f B D f = 0 x O f -1 W f = 0 ˙
94 93 ex R IDomn f B D f = 0 x O f -1 W f = 0 ˙
95 94 necon3ad R IDomn f B D f = 0 f 0 ˙ ¬ x O f -1 W
96 48 95 mpd R IDomn f B D f = 0 ¬ x O f -1 W
97 96 eq0rdv R IDomn f B D f = 0 O f -1 W =
98 97 fveq2d R IDomn f B D f = 0 O f -1 W =
99 hash0 = 0
100 98 99 eqtrdi R IDomn f B D f = 0 O f -1 W = 0
101 50 41 breqtrrid R IDomn f B D f = 0 0 D f
102 100 101 eqbrtrd R IDomn f B D f = 0 O f -1 W D f
103 102 expr R IDomn f B D f = 0 O f -1 W D f
104 103 ralrimiva R IDomn f B D f = 0 O f -1 W D f
105 fveqeq2 f = g D f = d D g = d
106 fveq2 f = g O f = O g
107 106 cnveqd f = g O f -1 = O g -1
108 107 imaeq1d f = g O f -1 W = O g -1 W
109 108 fveq2d f = g O f -1 W = O g -1 W
110 fveq2 f = g D f = D g
111 109 110 breq12d f = g O f -1 W D f O g -1 W D g
112 105 111 imbi12d f = g D f = d O f -1 W D f D g = d O g -1 W D g
113 112 cbvralvw f B D f = d O f -1 W D f g B D g = d O g -1 W D g
114 simprr R IDomn d 0 f B D f = d + 1 D f = d + 1
115 peano2nn0 d 0 d + 1 0
116 115 ad2antlr R IDomn d 0 f B D f = d + 1 d + 1 0
117 114 116 eqeltrd R IDomn d 0 f B D f = d + 1 D f 0
118 117 nn0ge0d R IDomn d 0 f B D f = d + 1 0 D f
119 fveq2 O f -1 W = O f -1 W =
120 119 99 eqtrdi O f -1 W = O f -1 W = 0
121 120 breq1d O f -1 W = O f -1 W D f 0 D f
122 118 121 syl5ibrcom R IDomn d 0 f B D f = d + 1 O f -1 W = O f -1 W D f
123 122 a1dd R IDomn d 0 f B D f = d + 1 O f -1 W = g B D g = d O g -1 W D g O f -1 W D f
124 n0 O f -1 W x x O f -1 W
125 simplll R IDomn d 0 f B D f = d + 1 x O f -1 W g B D g = d O g -1 W D g R IDomn
126 simplrl R IDomn d 0 f B D f = d + 1 x O f -1 W g B D g = d O g -1 W D g f B
127 eqid var 1 R = var 1 R
128 eqid - P = - P
129 eqid var 1 R - P algSc P x = var 1 R - P algSc P x
130 simpllr R IDomn d 0 f B D f = d + 1 x O f -1 W g B D g = d O g -1 W D g d 0
131 simplrr R IDomn d 0 f B D f = d + 1 x O f -1 W g B D g = d O g -1 W D g D f = d + 1
132 simprl R IDomn d 0 f B D f = d + 1 x O f -1 W g B D g = d O g -1 W D g x O f -1 W
133 simprr R IDomn d 0 f B D f = d + 1 x O f -1 W g B D g = d O g -1 W D g g B D g = d O g -1 W D g
134 1 2 3 4 5 6 125 126 62 127 128 54 129 130 131 132 133 fta1glem2 R IDomn d 0 f B D f = d + 1 x O f -1 W g B D g = d O g -1 W D g O f -1 W D f
135 134 exp32 R IDomn d 0 f B D f = d + 1 x O f -1 W g B D g = d O g -1 W D g O f -1 W D f
136 135 exlimdv R IDomn d 0 f B D f = d + 1 x x O f -1 W g B D g = d O g -1 W D g O f -1 W D f
137 124 136 syl5bi R IDomn d 0 f B D f = d + 1 O f -1 W g B D g = d O g -1 W D g O f -1 W D f
138 123 137 pm2.61dne R IDomn d 0 f B D f = d + 1 g B D g = d O g -1 W D g O f -1 W D f
139 138 expr R IDomn d 0 f B D f = d + 1 g B D g = d O g -1 W D g O f -1 W D f
140 139 com23 R IDomn d 0 f B g B D g = d O g -1 W D g D f = d + 1 O f -1 W D f
141 140 ralrimdva R IDomn d 0 g B D g = d O g -1 W D g f B D f = d + 1 O f -1 W D f
142 113 141 syl5bi R IDomn d 0 f B D f = d O f -1 W D f f B D f = d + 1 O f -1 W D f
143 142 expcom d 0 R IDomn f B D f = d O f -1 W D f f B D f = d + 1 O f -1 W D f
144 143 a2d d 0 R IDomn f B D f = d O f -1 W D f R IDomn f B D f = d + 1 O f -1 W D f
145 28 32 36 40 104 144 nn0ind D F 0 R IDomn f B D f = D F O f -1 W D f
146 24 7 145 sylc φ f B D f = D F O f -1 W D f
147 18 146 8 rspcdva φ D F = D F O F -1 W D F
148 10 147 mpi φ O F -1 W D F