Metamath Proof Explorer


Theorem fta1g

Description: The one-sided fundamental theorem of algebra. A polynomial of degree n has at most n roots. Unlike the real fundamental theorem fta , which is only true in CC and other algebraically closed fields, this is true in any integral domain. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses fta1g.p P=Poly1R
fta1g.b B=BaseP
fta1g.d D=deg1R
fta1g.o O=eval1R
fta1g.w W=0R
fta1g.z 0˙=0P
fta1g.1 φRIDomn
fta1g.2 φFB
fta1g.3 φF0˙
Assertion fta1g φOF-1WDF

Proof

Step Hyp Ref Expression
1 fta1g.p P=Poly1R
2 fta1g.b B=BaseP
3 fta1g.d D=deg1R
4 fta1g.o O=eval1R
5 fta1g.w W=0R
6 fta1g.z 0˙=0P
7 fta1g.1 φRIDomn
8 fta1g.2 φFB
9 fta1g.3 φF0˙
10 eqid DF=DF
11 fveqeq2 f=FDf=DFDF=DF
12 fveq2 f=FOf=OF
13 12 cnveqd f=FOf-1=OF-1
14 13 imaeq1d f=FOf-1W=OF-1W
15 14 fveq2d f=FOf-1W=OF-1W
16 fveq2 f=FDf=DF
17 15 16 breq12d f=FOf-1WDfOF-1WDF
18 11 17 imbi12d f=FDf=DFOf-1WDfDF=DFOF-1WDF
19 isidom RIDomnRCRingRDomn
20 19 simplbi RIDomnRCRing
21 crngring RCRingRRing
22 7 20 21 3syl φRRing
23 3 1 6 2 deg1nn0cl RRingFBF0˙DF0
24 22 8 9 23 syl3anc φDF0
25 eqeq2 x=0Df=xDf=0
26 25 imbi1d x=0Df=xOf-1WDfDf=0Of-1WDf
27 26 ralbidv x=0fBDf=xOf-1WDffBDf=0Of-1WDf
28 27 imbi2d x=0RIDomnfBDf=xOf-1WDfRIDomnfBDf=0Of-1WDf
29 eqeq2 x=dDf=xDf=d
30 29 imbi1d x=dDf=xOf-1WDfDf=dOf-1WDf
31 30 ralbidv x=dfBDf=xOf-1WDffBDf=dOf-1WDf
32 31 imbi2d x=dRIDomnfBDf=xOf-1WDfRIDomnfBDf=dOf-1WDf
33 eqeq2 x=d+1Df=xDf=d+1
34 33 imbi1d x=d+1Df=xOf-1WDfDf=d+1Of-1WDf
35 34 ralbidv x=d+1fBDf=xOf-1WDffBDf=d+1Of-1WDf
36 35 imbi2d x=d+1RIDomnfBDf=xOf-1WDfRIDomnfBDf=d+1Of-1WDf
37 eqeq2 x=DFDf=xDf=DF
38 37 imbi1d x=DFDf=xOf-1WDfDf=DFOf-1WDf
39 38 ralbidv x=DFfBDf=xOf-1WDffBDf=DFOf-1WDf
40 39 imbi2d x=DFRIDomnfBDf=xOf-1WDfRIDomnfBDf=DFOf-1WDf
41 simprr RIDomnfBDf=0Df=0
42 0nn0 00
43 41 42 eqeltrdi RIDomnfBDf=0Df0
44 20 21 syl RIDomnRRing
45 simpl fBDf=0fB
46 3 1 6 2 deg1nn0clb RRingfBf0˙Df0
47 44 45 46 syl2an RIDomnfBDf=0f0˙Df0
48 43 47 mpbird RIDomnfBDf=0f0˙
49 simplrr RIDomnfBDf=0xOf-1WDf=0
50 0le0 00
51 49 50 eqbrtrdi RIDomnfBDf=0xOf-1WDf0
52 44 ad2antrr RIDomnfBDf=0xOf-1WRRing
53 simplrl RIDomnfBDf=0xOf-1WfB
54 eqid algScP=algScP
55 3 1 2 54 deg1le0 RRingfBDf0f=algScPcoe1f0
56 52 53 55 syl2anc RIDomnfBDf=0xOf-1WDf0f=algScPcoe1f0
57 51 56 mpbid RIDomnfBDf=0xOf-1Wf=algScPcoe1f0
58 57 fveq2d RIDomnfBDf=0xOf-1WOf=OalgScPcoe1f0
59 20 adantr RIDomnfBDf=0RCRing
60 59 adantr RIDomnfBDf=0xOf-1WRCRing
61 eqid coe1f=coe1f
62 eqid BaseR=BaseR
63 61 2 1 62 coe1f fBcoe1f:0BaseR
64 53 63 syl RIDomnfBDf=0xOf-1Wcoe1f:0BaseR
65 ffvelcdm coe1f:0BaseR00coe1f0BaseR
66 64 42 65 sylancl RIDomnfBDf=0xOf-1Wcoe1f0BaseR
67 4 1 62 54 evl1sca RCRingcoe1f0BaseROalgScPcoe1f0=BaseR×coe1f0
68 60 66 67 syl2anc RIDomnfBDf=0xOf-1WOalgScPcoe1f0=BaseR×coe1f0
69 58 68 eqtrd RIDomnfBDf=0xOf-1WOf=BaseR×coe1f0
70 69 fveq1d RIDomnfBDf=0xOf-1WOfx=BaseR×coe1f0x
71 eqid R𝑠BaseR=R𝑠BaseR
72 eqid BaseR𝑠BaseR=BaseR𝑠BaseR
73 simpl RIDomnfBDf=0RIDomn
74 fvexd RIDomnfBDf=0BaseRV
75 4 1 71 62 evl1rhm RCRingOPRingHomR𝑠BaseR
76 2 72 rhmf OPRingHomR𝑠BaseRO:BBaseR𝑠BaseR
77 59 75 76 3syl RIDomnfBDf=0O:BBaseR𝑠BaseR
78 simprl RIDomnfBDf=0fB
79 77 78 ffvelcdmd RIDomnfBDf=0OfBaseR𝑠BaseR
80 71 62 72 73 74 79 pwselbas RIDomnfBDf=0Of:BaseRBaseR
81 ffn Of:BaseRBaseROfFnBaseR
82 fniniseg OfFnBaseRxOf-1WxBaseROfx=W
83 80 81 82 3syl RIDomnfBDf=0xOf-1WxBaseROfx=W
84 83 simplbda RIDomnfBDf=0xOf-1WOfx=W
85 83 simprbda RIDomnfBDf=0xOf-1WxBaseR
86 fvex coe1f0V
87 86 fvconst2 xBaseRBaseR×coe1f0x=coe1f0
88 85 87 syl RIDomnfBDf=0xOf-1WBaseR×coe1f0x=coe1f0
89 70 84 88 3eqtr3rd RIDomnfBDf=0xOf-1Wcoe1f0=W
90 89 fveq2d RIDomnfBDf=0xOf-1WalgScPcoe1f0=algScPW
91 1 54 5 6 ply1scl0 RRingalgScPW=0˙
92 52 91 syl RIDomnfBDf=0xOf-1WalgScPW=0˙
93 57 90 92 3eqtrd RIDomnfBDf=0xOf-1Wf=0˙
94 93 ex RIDomnfBDf=0xOf-1Wf=0˙
95 94 necon3ad RIDomnfBDf=0f0˙¬xOf-1W
96 48 95 mpd RIDomnfBDf=0¬xOf-1W
97 96 eq0rdv RIDomnfBDf=0Of-1W=
98 97 fveq2d RIDomnfBDf=0Of-1W=
99 hash0 =0
100 98 99 eqtrdi RIDomnfBDf=0Of-1W=0
101 50 41 breqtrrid RIDomnfBDf=00Df
102 100 101 eqbrtrd RIDomnfBDf=0Of-1WDf
103 102 expr RIDomnfBDf=0Of-1WDf
104 103 ralrimiva RIDomnfBDf=0Of-1WDf
105 fveqeq2 f=gDf=dDg=d
106 fveq2 f=gOf=Og
107 106 cnveqd f=gOf-1=Og-1
108 107 imaeq1d f=gOf-1W=Og-1W
109 108 fveq2d f=gOf-1W=Og-1W
110 fveq2 f=gDf=Dg
111 109 110 breq12d f=gOf-1WDfOg-1WDg
112 105 111 imbi12d f=gDf=dOf-1WDfDg=dOg-1WDg
113 112 cbvralvw fBDf=dOf-1WDfgBDg=dOg-1WDg
114 simprr RIDomnd0fBDf=d+1Df=d+1
115 peano2nn0 d0d+10
116 115 ad2antlr RIDomnd0fBDf=d+1d+10
117 114 116 eqeltrd RIDomnd0fBDf=d+1Df0
118 117 nn0ge0d RIDomnd0fBDf=d+10Df
119 fveq2 Of-1W=Of-1W=
120 119 99 eqtrdi Of-1W=Of-1W=0
121 120 breq1d Of-1W=Of-1WDf0Df
122 118 121 syl5ibrcom RIDomnd0fBDf=d+1Of-1W=Of-1WDf
123 122 a1dd RIDomnd0fBDf=d+1Of-1W=gBDg=dOg-1WDgOf-1WDf
124 n0 Of-1WxxOf-1W
125 simplll RIDomnd0fBDf=d+1xOf-1WgBDg=dOg-1WDgRIDomn
126 simplrl RIDomnd0fBDf=d+1xOf-1WgBDg=dOg-1WDgfB
127 eqid var1R=var1R
128 eqid -P=-P
129 eqid var1R-PalgScPx=var1R-PalgScPx
130 simpllr RIDomnd0fBDf=d+1xOf-1WgBDg=dOg-1WDgd0
131 simplrr RIDomnd0fBDf=d+1xOf-1WgBDg=dOg-1WDgDf=d+1
132 simprl RIDomnd0fBDf=d+1xOf-1WgBDg=dOg-1WDgxOf-1W
133 simprr RIDomnd0fBDf=d+1xOf-1WgBDg=dOg-1WDggBDg=dOg-1WDg
134 1 2 3 4 5 6 125 126 62 127 128 54 129 130 131 132 133 fta1glem2 RIDomnd0fBDf=d+1xOf-1WgBDg=dOg-1WDgOf-1WDf
135 134 exp32 RIDomnd0fBDf=d+1xOf-1WgBDg=dOg-1WDgOf-1WDf
136 135 exlimdv RIDomnd0fBDf=d+1xxOf-1WgBDg=dOg-1WDgOf-1WDf
137 124 136 biimtrid RIDomnd0fBDf=d+1Of-1WgBDg=dOg-1WDgOf-1WDf
138 123 137 pm2.61dne RIDomnd0fBDf=d+1gBDg=dOg-1WDgOf-1WDf
139 138 expr RIDomnd0fBDf=d+1gBDg=dOg-1WDgOf-1WDf
140 139 com23 RIDomnd0fBgBDg=dOg-1WDgDf=d+1Of-1WDf
141 140 ralrimdva RIDomnd0gBDg=dOg-1WDgfBDf=d+1Of-1WDf
142 113 141 biimtrid RIDomnd0fBDf=dOf-1WDffBDf=d+1Of-1WDf
143 142 expcom d0RIDomnfBDf=dOf-1WDffBDf=d+1Of-1WDf
144 143 a2d d0RIDomnfBDf=dOf-1WDfRIDomnfBDf=d+1Of-1WDf
145 28 32 36 40 104 144 nn0ind DF0RIDomnfBDf=DFOf-1WDf
146 24 7 145 sylc φfBDf=DFOf-1WDf
147 18 146 8 rspcdva φDF=DFOF-1WDF
148 10 147 mpi φOF-1WDF