Step |
Hyp |
Ref |
Expression |
1 |
|
fta1g.p |
|
2 |
|
fta1g.b |
|
3 |
|
fta1g.d |
|
4 |
|
fta1g.o |
|
5 |
|
fta1g.w |
|
6 |
|
fta1g.z |
|
7 |
|
fta1g.1 |
|
8 |
|
fta1g.2 |
|
9 |
|
fta1glem.k |
|
10 |
|
fta1glem.x |
|
11 |
|
fta1glem.m |
|
12 |
|
fta1glem.a |
|
13 |
|
fta1glem.g |
|
14 |
|
fta1glem.3 |
|
15 |
|
fta1glem.4 |
|
16 |
|
fta1glem.5 |
|
17 |
|
fta1glem.6 |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
9
|
fvexi |
|
21 |
20
|
a1i |
|
22 |
|
isidom |
|
23 |
22
|
simplbi |
|
24 |
7 23
|
syl |
|
25 |
4 1 18 9
|
evl1rhm |
|
26 |
24 25
|
syl |
|
27 |
2 19
|
rhmf |
|
28 |
26 27
|
syl |
|
29 |
28 8
|
ffvelrnd |
|
30 |
18 9 19 7 21 29
|
pwselbas |
|
31 |
30
|
ffnd |
|
32 |
|
fniniseg |
|
33 |
31 32
|
syl |
|
34 |
16 33
|
mpbid |
|
35 |
34
|
simprd |
|
36 |
22
|
simprbi |
|
37 |
|
domnnzr |
|
38 |
36 37
|
syl |
|
39 |
7 38
|
syl |
|
40 |
34
|
simpld |
|
41 |
|
eqid |
|
42 |
1 2 9 10 11 12 13 4 39 24 40 8 5 41
|
facth1 |
|
43 |
35 42
|
mpbird |
|
44 |
|
nzrring |
|
45 |
39 44
|
syl |
|
46 |
|
eqid |
|
47 |
1 2 9 10 11 12 13 4 39 24 40 46 3 5
|
ply1remlem |
|
48 |
47
|
simp1d |
|
49 |
|
eqid |
|
50 |
49 46
|
mon1puc1p |
|
51 |
45 48 50
|
syl2anc |
|
52 |
|
eqid |
|
53 |
|
eqid |
|
54 |
1 41 2 49 52 53
|
dvdsq1p |
|
55 |
45 8 51 54
|
syl3anc |
|
56 |
43 55
|
mpbid |
|
57 |
56
|
fveq2d |
|
58 |
53 1 2 49
|
q1pcl |
|
59 |
45 8 51 58
|
syl3anc |
|
60 |
1 2 46
|
mon1pcl |
|
61 |
48 60
|
syl |
|
62 |
|
eqid |
|
63 |
2 52 62
|
rhmmul |
|
64 |
26 59 61 63
|
syl3anc |
|
65 |
28 59
|
ffvelrnd |
|
66 |
28 61
|
ffvelrnd |
|
67 |
|
eqid |
|
68 |
18 19 7 21 65 66 67 62
|
pwsmulrval |
|
69 |
57 64 68
|
3eqtrd |
|
70 |
69
|
fveq1d |
|
71 |
70
|
adantr |
|
72 |
18 9 19 7 21 65
|
pwselbas |
|
73 |
72
|
ffnd |
|
74 |
73
|
adantr |
|
75 |
18 9 19 7 21 66
|
pwselbas |
|
76 |
75
|
ffnd |
|
77 |
76
|
adantr |
|
78 |
20
|
a1i |
|
79 |
|
simpr |
|
80 |
|
fnfvof |
|
81 |
74 77 78 79 80
|
syl22anc |
|
82 |
71 81
|
eqtrd |
|
83 |
82
|
eqeq1d |
|
84 |
7 36
|
syl |
|
85 |
84
|
adantr |
|
86 |
72
|
ffvelrnda |
|
87 |
75
|
ffvelrnda |
|
88 |
9 67 5
|
domneq0 |
|
89 |
85 86 87 88
|
syl3anc |
|
90 |
83 89
|
bitrd |
|
91 |
90
|
pm5.32da |
|
92 |
|
andi |
|
93 |
91 92
|
bitrdi |
|
94 |
|
fniniseg |
|
95 |
31 94
|
syl |
|
96 |
|
elun |
|
97 |
|
fniniseg |
|
98 |
73 97
|
syl |
|
99 |
47
|
simp3d |
|
100 |
99
|
eleq2d |
|
101 |
|
fniniseg |
|
102 |
76 101
|
syl |
|
103 |
100 102
|
bitr3d |
|
104 |
98 103
|
orbi12d |
|
105 |
96 104
|
syl5bb |
|
106 |
93 95 105
|
3bitr4d |
|
107 |
106
|
eqrdv |
|
108 |
107
|
fveq2d |
|
109 |
|
fvex |
|
110 |
109
|
cnvex |
|
111 |
110
|
imaex |
|
112 |
111
|
a1i |
|
113 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
fta1glem1 |
|
114 |
|
fveq2 |
|
115 |
114
|
eqeq1d |
|
116 |
|
fveq2 |
|
117 |
116
|
cnveqd |
|
118 |
117
|
imaeq1d |
|
119 |
118
|
fveq2d |
|
120 |
119 114
|
breq12d |
|
121 |
115 120
|
imbi12d |
|
122 |
121 17 59
|
rspcdva |
|
123 |
113 122
|
mpd |
|
124 |
123 113
|
breqtrd |
|
125 |
|
hashbnd |
|
126 |
112 14 124 125
|
syl3anc |
|
127 |
|
snfi |
|
128 |
|
unfi |
|
129 |
126 127 128
|
sylancl |
|
130 |
|
hashcl |
|
131 |
129 130
|
syl |
|
132 |
131
|
nn0red |
|
133 |
|
hashcl |
|
134 |
126 133
|
syl |
|
135 |
134
|
nn0red |
|
136 |
|
peano2re |
|
137 |
135 136
|
syl |
|
138 |
|
peano2nn0 |
|
139 |
14 138
|
syl |
|
140 |
15 139
|
eqeltrd |
|
141 |
140
|
nn0red |
|
142 |
|
hashun2 |
|
143 |
126 127 142
|
sylancl |
|
144 |
|
hashsng |
|
145 |
16 144
|
syl |
|
146 |
145
|
oveq2d |
|
147 |
143 146
|
breqtrd |
|
148 |
14
|
nn0red |
|
149 |
|
1red |
|
150 |
135 148 149 124
|
leadd1dd |
|
151 |
150 15
|
breqtrrd |
|
152 |
132 137 141 147 151
|
letrd |
|
153 |
108 152
|
eqbrtrd |
|