Metamath Proof Explorer


Theorem fta1lem

Description: Lemma for fta1 . (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypotheses fta1.1 R = F -1 0
fta1.2 φ D 0
fta1.3 φ F Poly 0 𝑝
fta1.4 φ deg F = D + 1
fta1.5 φ A F -1 0
fta1.6 φ g Poly 0 𝑝 deg g = D g -1 0 Fin g -1 0 deg g
Assertion fta1lem φ R Fin R deg F

Proof

Step Hyp Ref Expression
1 fta1.1 R = F -1 0
2 fta1.2 φ D 0
3 fta1.3 φ F Poly 0 𝑝
4 fta1.4 φ deg F = D + 1
5 fta1.5 φ A F -1 0
6 fta1.6 φ g Poly 0 𝑝 deg g = D g -1 0 Fin g -1 0 deg g
7 eldifsn F Poly 0 𝑝 F Poly F 0 𝑝
8 3 7 sylib φ F Poly F 0 𝑝
9 8 simpld φ F Poly
10 plyf F Poly F :
11 ffn F : F Fn
12 fniniseg F Fn A F -1 0 A F A = 0
13 9 10 11 12 4syl φ A F -1 0 A F A = 0
14 5 13 mpbid φ A F A = 0
15 14 simpld φ A
16 14 simprd φ F A = 0
17 eqid X p f × A = X p f × A
18 17 facth F Poly A F A = 0 F = X p f × A × f F quot X p f × A
19 9 15 16 18 syl3anc φ F = X p f × A × f F quot X p f × A
20 19 cnveqd φ F -1 = X p f × A × f F quot X p f × A -1
21 20 imaeq1d φ F -1 0 = X p f × A × f F quot X p f × A -1 0
22 cnex V
23 22 a1i φ V
24 ssid
25 ax-1cn 1
26 plyid 1 X p Poly
27 24 25 26 mp2an X p Poly
28 plyconst A × A Poly
29 24 15 28 sylancr φ × A Poly
30 plysubcl X p Poly × A Poly X p f × A Poly
31 27 29 30 sylancr φ X p f × A Poly
32 plyf X p f × A Poly X p f × A :
33 31 32 syl φ X p f × A :
34 17 plyremlem A X p f × A Poly deg X p f × A = 1 X p f × A -1 0 = A
35 15 34 syl φ X p f × A Poly deg X p f × A = 1 X p f × A -1 0 = A
36 35 simp2d φ deg X p f × A = 1
37 ax-1ne0 1 0
38 37 a1i φ 1 0
39 36 38 eqnetrd φ deg X p f × A 0
40 fveq2 X p f × A = 0 𝑝 deg X p f × A = deg 0 𝑝
41 dgr0 deg 0 𝑝 = 0
42 40 41 eqtrdi X p f × A = 0 𝑝 deg X p f × A = 0
43 42 necon3i deg X p f × A 0 X p f × A 0 𝑝
44 39 43 syl φ X p f × A 0 𝑝
45 quotcl2 F Poly X p f × A Poly X p f × A 0 𝑝 F quot X p f × A Poly
46 9 31 44 45 syl3anc φ F quot X p f × A Poly
47 plyf F quot X p f × A Poly F quot X p f × A :
48 46 47 syl φ F quot X p f × A :
49 ofmulrt V X p f × A : F quot X p f × A : X p f × A × f F quot X p f × A -1 0 = X p f × A -1 0 F quot X p f × A -1 0
50 23 33 48 49 syl3anc φ X p f × A × f F quot X p f × A -1 0 = X p f × A -1 0 F quot X p f × A -1 0
51 35 simp3d φ X p f × A -1 0 = A
52 51 uneq1d φ X p f × A -1 0 F quot X p f × A -1 0 = A F quot X p f × A -1 0
53 21 50 52 3eqtrd φ F -1 0 = A F quot X p f × A -1 0
54 uncom F quot X p f × A -1 0 A = A F quot X p f × A -1 0
55 53 1 54 3eqtr4g φ R = F quot X p f × A -1 0 A
56 25 a1i φ 1
57 dgrcl F quot X p f × A Poly deg F quot X p f × A 0
58 46 57 syl φ deg F quot X p f × A 0
59 58 nn0cnd φ deg F quot X p f × A
60 2 nn0cnd φ D
61 addcom 1 D 1 + D = D + 1
62 25 60 61 sylancr φ 1 + D = D + 1
63 19 fveq2d φ deg F = deg X p f × A × f F quot X p f × A
64 8 simprd φ F 0 𝑝
65 19 eqcomd φ X p f × A × f F quot X p f × A = F
66 0cnd φ 0
67 mul01 x x 0 = 0
68 67 adantl φ x x 0 = 0
69 23 33 66 66 68 caofid1 φ X p f × A × f × 0 = × 0
70 df-0p 0 𝑝 = × 0
71 70 oveq2i X p f × A × f 0 𝑝 = X p f × A × f × 0
72 69 71 70 3eqtr4g φ X p f × A × f 0 𝑝 = 0 𝑝
73 64 65 72 3netr4d φ X p f × A × f F quot X p f × A X p f × A × f 0 𝑝
74 oveq2 F quot X p f × A = 0 𝑝 X p f × A × f F quot X p f × A = X p f × A × f 0 𝑝
75 74 necon3i X p f × A × f F quot X p f × A X p f × A × f 0 𝑝 F quot X p f × A 0 𝑝
76 73 75 syl φ F quot X p f × A 0 𝑝
77 eqid deg X p f × A = deg X p f × A
78 eqid deg F quot X p f × A = deg F quot X p f × A
79 77 78 dgrmul X p f × A Poly X p f × A 0 𝑝 F quot X p f × A Poly F quot X p f × A 0 𝑝 deg X p f × A × f F quot X p f × A = deg X p f × A + deg F quot X p f × A
80 31 44 46 76 79 syl22anc φ deg X p f × A × f F quot X p f × A = deg X p f × A + deg F quot X p f × A
81 63 4 80 3eqtr3d φ D + 1 = deg X p f × A + deg F quot X p f × A
82 36 oveq1d φ deg X p f × A + deg F quot X p f × A = 1 + deg F quot X p f × A
83 62 81 82 3eqtrrd φ 1 + deg F quot X p f × A = 1 + D
84 56 59 60 83 addcanad φ deg F quot X p f × A = D
85 fveqeq2 g = F quot X p f × A deg g = D deg F quot X p f × A = D
86 cnveq g = F quot X p f × A g -1 = F quot X p f × A -1
87 86 imaeq1d g = F quot X p f × A g -1 0 = F quot X p f × A -1 0
88 87 eleq1d g = F quot X p f × A g -1 0 Fin F quot X p f × A -1 0 Fin
89 87 fveq2d g = F quot X p f × A g -1 0 = F quot X p f × A -1 0
90 fveq2 g = F quot X p f × A deg g = deg F quot X p f × A
91 89 90 breq12d g = F quot X p f × A g -1 0 deg g F quot X p f × A -1 0 deg F quot X p f × A
92 88 91 anbi12d g = F quot X p f × A g -1 0 Fin g -1 0 deg g F quot X p f × A -1 0 Fin F quot X p f × A -1 0 deg F quot X p f × A
93 85 92 imbi12d g = F quot X p f × A deg g = D g -1 0 Fin g -1 0 deg g deg F quot X p f × A = D F quot X p f × A -1 0 Fin F quot X p f × A -1 0 deg F quot X p f × A
94 eldifsn F quot X p f × A Poly 0 𝑝 F quot X p f × A Poly F quot X p f × A 0 𝑝
95 46 76 94 sylanbrc φ F quot X p f × A Poly 0 𝑝
96 93 6 95 rspcdva φ deg F quot X p f × A = D F quot X p f × A -1 0 Fin F quot X p f × A -1 0 deg F quot X p f × A
97 84 96 mpd φ F quot X p f × A -1 0 Fin F quot X p f × A -1 0 deg F quot X p f × A
98 97 simpld φ F quot X p f × A -1 0 Fin
99 snfi A Fin
100 unfi F quot X p f × A -1 0 Fin A Fin F quot X p f × A -1 0 A Fin
101 98 99 100 sylancl φ F quot X p f × A -1 0 A Fin
102 55 101 eqeltrd φ R Fin
103 55 fveq2d φ R = F quot X p f × A -1 0 A
104 hashcl F quot X p f × A -1 0 A Fin F quot X p f × A -1 0 A 0
105 101 104 syl φ F quot X p f × A -1 0 A 0
106 105 nn0red φ F quot X p f × A -1 0 A
107 hashcl F quot X p f × A -1 0 Fin F quot X p f × A -1 0 0
108 98 107 syl φ F quot X p f × A -1 0 0
109 108 nn0red φ F quot X p f × A -1 0
110 peano2re F quot X p f × A -1 0 F quot X p f × A -1 0 + 1
111 109 110 syl φ F quot X p f × A -1 0 + 1
112 dgrcl F Poly deg F 0
113 9 112 syl φ deg F 0
114 113 nn0red φ deg F
115 hashun2 F quot X p f × A -1 0 Fin A Fin F quot X p f × A -1 0 A F quot X p f × A -1 0 + A
116 98 99 115 sylancl φ F quot X p f × A -1 0 A F quot X p f × A -1 0 + A
117 hashsng A A = 1
118 15 117 syl φ A = 1
119 118 oveq2d φ F quot X p f × A -1 0 + A = F quot X p f × A -1 0 + 1
120 116 119 breqtrd φ F quot X p f × A -1 0 A F quot X p f × A -1 0 + 1
121 2 nn0red φ D
122 1red φ 1
123 97 simprd φ F quot X p f × A -1 0 deg F quot X p f × A
124 123 84 breqtrd φ F quot X p f × A -1 0 D
125 109 121 122 124 leadd1dd φ F quot X p f × A -1 0 + 1 D + 1
126 125 4 breqtrrd φ F quot X p f × A -1 0 + 1 deg F
127 106 111 114 120 126 letrd φ F quot X p f × A -1 0 A deg F
128 103 127 eqbrtrd φ R deg F
129 102 128 jca φ R Fin R deg F