Step |
Hyp |
Ref |
Expression |
1 |
|
ftalem.1 |
|
2 |
|
ftalem.2 |
|
3 |
|
ftalem.3 |
|
4 |
|
ftalem.4 |
|
5 |
|
ftalem1.5 |
|
6 |
|
ftalem1.6 |
|
7 |
|
fzfid |
|
8 |
1
|
coef3 |
|
9 |
3 8
|
syl |
|
10 |
|
elfznn0 |
|
11 |
|
ffvelrn |
|
12 |
9 10 11
|
syl2an |
|
13 |
12
|
abscld |
|
14 |
7 13
|
fsumrecl |
|
15 |
14 5
|
rerpdivcld |
|
16 |
6 15
|
eqeltrid |
|
17 |
|
1re |
|
18 |
|
ifcl |
|
19 |
16 17 18
|
sylancl |
|
20 |
|
fzfid |
|
21 |
9
|
adantr |
|
22 |
21 11
|
sylan |
|
23 |
|
simprl |
|
24 |
|
expcl |
|
25 |
23 24
|
sylan |
|
26 |
22 25
|
mulcld |
|
27 |
10 26
|
sylan2 |
|
28 |
20 27
|
fsumcl |
|
29 |
4
|
nnnn0d |
|
30 |
29
|
adantr |
|
31 |
21 30
|
ffvelrnd |
|
32 |
23 30
|
expcld |
|
33 |
31 32
|
mulcld |
|
34 |
3
|
adantr |
|
35 |
1 2
|
coeid2 |
|
36 |
34 23 35
|
syl2anc |
|
37 |
|
nn0uz |
|
38 |
30 37
|
eleqtrdi |
|
39 |
|
elfznn0 |
|
40 |
39 26
|
sylan2 |
|
41 |
|
fveq2 |
|
42 |
|
oveq2 |
|
43 |
41 42
|
oveq12d |
|
44 |
38 40 43
|
fsumm1 |
|
45 |
36 44
|
eqtrd |
|
46 |
28 33 45
|
mvrraddd |
|
47 |
46
|
fveq2d |
|
48 |
28
|
abscld |
|
49 |
27
|
abscld |
|
50 |
20 49
|
fsumrecl |
|
51 |
5
|
adantr |
|
52 |
51
|
rpred |
|
53 |
23
|
abscld |
|
54 |
53 30
|
reexpcld |
|
55 |
52 54
|
remulcld |
|
56 |
20 27
|
fsumabs |
|
57 |
14
|
adantr |
|
58 |
4
|
adantr |
|
59 |
|
nnm1nn0 |
|
60 |
58 59
|
syl |
|
61 |
53 60
|
reexpcld |
|
62 |
57 61
|
remulcld |
|
63 |
13
|
adantlr |
|
64 |
61
|
adantr |
|
65 |
63 64
|
remulcld |
|
66 |
22 25
|
absmuld |
|
67 |
10 66
|
sylan2 |
|
68 |
10 25
|
sylan2 |
|
69 |
68
|
abscld |
|
70 |
10 22
|
sylan2 |
|
71 |
70
|
absge0d |
|
72 |
|
absexp |
|
73 |
23 10 72
|
syl2an |
|
74 |
53
|
adantr |
|
75 |
17
|
a1i |
|
76 |
19
|
adantr |
|
77 |
|
max1 |
|
78 |
17 16 77
|
sylancr |
|
79 |
78
|
adantr |
|
80 |
|
simprr |
|
81 |
75 76 53 79 80
|
lelttrd |
|
82 |
75 53 81
|
ltled |
|
83 |
82
|
adantr |
|
84 |
|
elfzuz3 |
|
85 |
84
|
adantl |
|
86 |
74 83 85
|
leexp2ad |
|
87 |
73 86
|
eqbrtrd |
|
88 |
69 64 63 71 87
|
lemul2ad |
|
89 |
67 88
|
eqbrtrd |
|
90 |
20 49 65 89
|
fsumle |
|
91 |
61
|
recnd |
|
92 |
63
|
recnd |
|
93 |
20 91 92
|
fsummulc1 |
|
94 |
90 93
|
breqtrrd |
|
95 |
16
|
adantr |
|
96 |
|
max2 |
|
97 |
17 16 96
|
sylancr |
|
98 |
97
|
adantr |
|
99 |
95 76 53 98 80
|
lelttrd |
|
100 |
6 99
|
eqbrtrrid |
|
101 |
57 53 51
|
ltdivmuld |
|
102 |
100 101
|
mpbid |
|
103 |
52 53
|
remulcld |
|
104 |
60
|
nn0zd |
|
105 |
|
0red |
|
106 |
|
0lt1 |
|
107 |
106
|
a1i |
|
108 |
105 75 53 107 81
|
lttrd |
|
109 |
|
expgt0 |
|
110 |
53 104 108 109
|
syl3anc |
|
111 |
|
ltmul1 |
|
112 |
57 103 61 110 111
|
syl112anc |
|
113 |
102 112
|
mpbid |
|
114 |
53
|
recnd |
|
115 |
|
expm1t |
|
116 |
114 58 115
|
syl2anc |
|
117 |
91 114
|
mulcomd |
|
118 |
116 117
|
eqtrd |
|
119 |
118
|
oveq2d |
|
120 |
52
|
recnd |
|
121 |
120 114 91
|
mulassd |
|
122 |
119 121
|
eqtr4d |
|
123 |
113 122
|
breqtrrd |
|
124 |
50 62 55 94 123
|
lelttrd |
|
125 |
48 50 55 56 124
|
lelttrd |
|
126 |
47 125
|
eqbrtrd |
|
127 |
126
|
expr |
|
128 |
127
|
ralrimiva |
|
129 |
|
breq1 |
|
130 |
129
|
rspceaimv |
|
131 |
19 128 130
|
syl2anc |
|