Metamath Proof Explorer


Theorem ftalem1

Description: Lemma for fta : "growth lemma". There exists some r such that F is arbitrarily close in proportion to its dominant term. (Contributed by Mario Carneiro, 14-Sep-2014)

Ref Expression
Hypotheses ftalem.1 A = coeff F
ftalem.2 N = deg F
ftalem.3 φ F Poly S
ftalem.4 φ N
ftalem1.5 φ E +
ftalem1.6 T = k = 0 N 1 A k E
Assertion ftalem1 φ r x r < x F x A N x N < E x N

Proof

Step Hyp Ref Expression
1 ftalem.1 A = coeff F
2 ftalem.2 N = deg F
3 ftalem.3 φ F Poly S
4 ftalem.4 φ N
5 ftalem1.5 φ E +
6 ftalem1.6 T = k = 0 N 1 A k E
7 fzfid φ 0 N 1 Fin
8 1 coef3 F Poly S A : 0
9 3 8 syl φ A : 0
10 elfznn0 k 0 N 1 k 0
11 ffvelrn A : 0 k 0 A k
12 9 10 11 syl2an φ k 0 N 1 A k
13 12 abscld φ k 0 N 1 A k
14 7 13 fsumrecl φ k = 0 N 1 A k
15 14 5 rerpdivcld φ k = 0 N 1 A k E
16 6 15 eqeltrid φ T
17 1re 1
18 ifcl T 1 if 1 T T 1
19 16 17 18 sylancl φ if 1 T T 1
20 fzfid φ x if 1 T T 1 < x 0 N 1 Fin
21 9 adantr φ x if 1 T T 1 < x A : 0
22 21 11 sylan φ x if 1 T T 1 < x k 0 A k
23 simprl φ x if 1 T T 1 < x x
24 expcl x k 0 x k
25 23 24 sylan φ x if 1 T T 1 < x k 0 x k
26 22 25 mulcld φ x if 1 T T 1 < x k 0 A k x k
27 10 26 sylan2 φ x if 1 T T 1 < x k 0 N 1 A k x k
28 20 27 fsumcl φ x if 1 T T 1 < x k = 0 N 1 A k x k
29 4 nnnn0d φ N 0
30 29 adantr φ x if 1 T T 1 < x N 0
31 21 30 ffvelrnd φ x if 1 T T 1 < x A N
32 23 30 expcld φ x if 1 T T 1 < x x N
33 31 32 mulcld φ x if 1 T T 1 < x A N x N
34 3 adantr φ x if 1 T T 1 < x F Poly S
35 1 2 coeid2 F Poly S x F x = k = 0 N A k x k
36 34 23 35 syl2anc φ x if 1 T T 1 < x F x = k = 0 N A k x k
37 nn0uz 0 = 0
38 30 37 eleqtrdi φ x if 1 T T 1 < x N 0
39 elfznn0 k 0 N k 0
40 39 26 sylan2 φ x if 1 T T 1 < x k 0 N A k x k
41 fveq2 k = N A k = A N
42 oveq2 k = N x k = x N
43 41 42 oveq12d k = N A k x k = A N x N
44 38 40 43 fsumm1 φ x if 1 T T 1 < x k = 0 N A k x k = k = 0 N 1 A k x k + A N x N
45 36 44 eqtrd φ x if 1 T T 1 < x F x = k = 0 N 1 A k x k + A N x N
46 28 33 45 mvrraddd φ x if 1 T T 1 < x F x A N x N = k = 0 N 1 A k x k
47 46 fveq2d φ x if 1 T T 1 < x F x A N x N = k = 0 N 1 A k x k
48 28 abscld φ x if 1 T T 1 < x k = 0 N 1 A k x k
49 27 abscld φ x if 1 T T 1 < x k 0 N 1 A k x k
50 20 49 fsumrecl φ x if 1 T T 1 < x k = 0 N 1 A k x k
51 5 adantr φ x if 1 T T 1 < x E +
52 51 rpred φ x if 1 T T 1 < x E
53 23 abscld φ x if 1 T T 1 < x x
54 53 30 reexpcld φ x if 1 T T 1 < x x N
55 52 54 remulcld φ x if 1 T T 1 < x E x N
56 20 27 fsumabs φ x if 1 T T 1 < x k = 0 N 1 A k x k k = 0 N 1 A k x k
57 14 adantr φ x if 1 T T 1 < x k = 0 N 1 A k
58 4 adantr φ x if 1 T T 1 < x N
59 nnm1nn0 N N 1 0
60 58 59 syl φ x if 1 T T 1 < x N 1 0
61 53 60 reexpcld φ x if 1 T T 1 < x x N 1
62 57 61 remulcld φ x if 1 T T 1 < x k = 0 N 1 A k x N 1
63 13 adantlr φ x if 1 T T 1 < x k 0 N 1 A k
64 61 adantr φ x if 1 T T 1 < x k 0 N 1 x N 1
65 63 64 remulcld φ x if 1 T T 1 < x k 0 N 1 A k x N 1
66 22 25 absmuld φ x if 1 T T 1 < x k 0 A k x k = A k x k
67 10 66 sylan2 φ x if 1 T T 1 < x k 0 N 1 A k x k = A k x k
68 10 25 sylan2 φ x if 1 T T 1 < x k 0 N 1 x k
69 68 abscld φ x if 1 T T 1 < x k 0 N 1 x k
70 10 22 sylan2 φ x if 1 T T 1 < x k 0 N 1 A k
71 70 absge0d φ x if 1 T T 1 < x k 0 N 1 0 A k
72 absexp x k 0 x k = x k
73 23 10 72 syl2an φ x if 1 T T 1 < x k 0 N 1 x k = x k
74 53 adantr φ x if 1 T T 1 < x k 0 N 1 x
75 17 a1i φ x if 1 T T 1 < x 1
76 19 adantr φ x if 1 T T 1 < x if 1 T T 1
77 max1 1 T 1 if 1 T T 1
78 17 16 77 sylancr φ 1 if 1 T T 1
79 78 adantr φ x if 1 T T 1 < x 1 if 1 T T 1
80 simprr φ x if 1 T T 1 < x if 1 T T 1 < x
81 75 76 53 79 80 lelttrd φ x if 1 T T 1 < x 1 < x
82 75 53 81 ltled φ x if 1 T T 1 < x 1 x
83 82 adantr φ x if 1 T T 1 < x k 0 N 1 1 x
84 elfzuz3 k 0 N 1 N 1 k
85 84 adantl φ x if 1 T T 1 < x k 0 N 1 N 1 k
86 74 83 85 leexp2ad φ x if 1 T T 1 < x k 0 N 1 x k x N 1
87 73 86 eqbrtrd φ x if 1 T T 1 < x k 0 N 1 x k x N 1
88 69 64 63 71 87 lemul2ad φ x if 1 T T 1 < x k 0 N 1 A k x k A k x N 1
89 67 88 eqbrtrd φ x if 1 T T 1 < x k 0 N 1 A k x k A k x N 1
90 20 49 65 89 fsumle φ x if 1 T T 1 < x k = 0 N 1 A k x k k = 0 N 1 A k x N 1
91 61 recnd φ x if 1 T T 1 < x x N 1
92 63 recnd φ x if 1 T T 1 < x k 0 N 1 A k
93 20 91 92 fsummulc1 φ x if 1 T T 1 < x k = 0 N 1 A k x N 1 = k = 0 N 1 A k x N 1
94 90 93 breqtrrd φ x if 1 T T 1 < x k = 0 N 1 A k x k k = 0 N 1 A k x N 1
95 16 adantr φ x if 1 T T 1 < x T
96 max2 1 T T if 1 T T 1
97 17 16 96 sylancr φ T if 1 T T 1
98 97 adantr φ x if 1 T T 1 < x T if 1 T T 1
99 95 76 53 98 80 lelttrd φ x if 1 T T 1 < x T < x
100 6 99 eqbrtrrid φ x if 1 T T 1 < x k = 0 N 1 A k E < x
101 57 53 51 ltdivmuld φ x if 1 T T 1 < x k = 0 N 1 A k E < x k = 0 N 1 A k < E x
102 100 101 mpbid φ x if 1 T T 1 < x k = 0 N 1 A k < E x
103 52 53 remulcld φ x if 1 T T 1 < x E x
104 60 nn0zd φ x if 1 T T 1 < x N 1
105 0red φ x if 1 T T 1 < x 0
106 0lt1 0 < 1
107 106 a1i φ x if 1 T T 1 < x 0 < 1
108 105 75 53 107 81 lttrd φ x if 1 T T 1 < x 0 < x
109 expgt0 x N 1 0 < x 0 < x N 1
110 53 104 108 109 syl3anc φ x if 1 T T 1 < x 0 < x N 1
111 ltmul1 k = 0 N 1 A k E x x N 1 0 < x N 1 k = 0 N 1 A k < E x k = 0 N 1 A k x N 1 < E x x N 1
112 57 103 61 110 111 syl112anc φ x if 1 T T 1 < x k = 0 N 1 A k < E x k = 0 N 1 A k x N 1 < E x x N 1
113 102 112 mpbid φ x if 1 T T 1 < x k = 0 N 1 A k x N 1 < E x x N 1
114 53 recnd φ x if 1 T T 1 < x x
115 expm1t x N x N = x N 1 x
116 114 58 115 syl2anc φ x if 1 T T 1 < x x N = x N 1 x
117 91 114 mulcomd φ x if 1 T T 1 < x x N 1 x = x x N 1
118 116 117 eqtrd φ x if 1 T T 1 < x x N = x x N 1
119 118 oveq2d φ x if 1 T T 1 < x E x N = E x x N 1
120 52 recnd φ x if 1 T T 1 < x E
121 120 114 91 mulassd φ x if 1 T T 1 < x E x x N 1 = E x x N 1
122 119 121 eqtr4d φ x if 1 T T 1 < x E x N = E x x N 1
123 113 122 breqtrrd φ x if 1 T T 1 < x k = 0 N 1 A k x N 1 < E x N
124 50 62 55 94 123 lelttrd φ x if 1 T T 1 < x k = 0 N 1 A k x k < E x N
125 48 50 55 56 124 lelttrd φ x if 1 T T 1 < x k = 0 N 1 A k x k < E x N
126 47 125 eqbrtrd φ x if 1 T T 1 < x F x A N x N < E x N
127 126 expr φ x if 1 T T 1 < x F x A N x N < E x N
128 127 ralrimiva φ x if 1 T T 1 < x F x A N x N < E x N
129 breq1 r = if 1 T T 1 r < x if 1 T T 1 < x
130 129 rspceaimv if 1 T T 1 x if 1 T T 1 < x F x A N x N < E x N r x r < x F x A N x N < E x N
131 19 128 130 syl2anc φ r x r < x F x A N x N < E x N