Step |
Hyp |
Ref |
Expression |
1 |
|
ftalem.1 |
|
2 |
|
ftalem.2 |
|
3 |
|
ftalem.3 |
|
4 |
|
ftalem.4 |
|
5 |
|
ftalem2.5 |
|
6 |
|
ftalem2.6 |
|
7 |
1
|
coef3 |
|
8 |
3 7
|
syl |
|
9 |
4
|
nnnn0d |
|
10 |
8 9
|
ffvelrnd |
|
11 |
4
|
nnne0d |
|
12 |
2 1
|
dgreq0 |
|
13 |
|
fveq2 |
|
14 |
|
dgr0 |
|
15 |
13 14
|
eqtrdi |
|
16 |
2 15
|
eqtrid |
|
17 |
12 16
|
syl6bir |
|
18 |
3 17
|
syl |
|
19 |
18
|
necon3d |
|
20 |
11 19
|
mpd |
|
21 |
10 20
|
absrpcld |
|
22 |
21
|
rphalfcld |
|
23 |
|
2fveq3 |
|
24 |
23
|
cbvsumv |
|
25 |
24
|
oveq1i |
|
26 |
1 2 3 4 22 25
|
ftalem1 |
|
27 |
|
plyf |
|
28 |
3 27
|
syl |
|
29 |
|
0cn |
|
30 |
|
ffvelrn |
|
31 |
28 29 30
|
sylancl |
|
32 |
31
|
abscld |
|
33 |
32 22
|
rerpdivcld |
|
34 |
6 33
|
eqeltrid |
|
35 |
34
|
adantr |
|
36 |
|
simpr |
|
37 |
|
1re |
|
38 |
|
ifcl |
|
39 |
36 37 38
|
sylancl |
|
40 |
35 39
|
ifcld |
|
41 |
5 40
|
eqeltrid |
|
42 |
|
0red |
|
43 |
|
1red |
|
44 |
|
0lt1 |
|
45 |
44
|
a1i |
|
46 |
|
max1 |
|
47 |
37 36 46
|
sylancr |
|
48 |
|
max1 |
|
49 |
39 35 48
|
syl2anc |
|
50 |
49 5
|
breqtrrdi |
|
51 |
43 39 41 47 50
|
letrd |
|
52 |
42 43 41 45 51
|
ltletrd |
|
53 |
41 52
|
elrpd |
|
54 |
|
max2 |
|
55 |
37 36 54
|
sylancr |
|
56 |
36 39 41 55 50
|
letrd |
|
57 |
56
|
adantr |
|
58 |
|
abscl |
|
59 |
|
lelttr |
|
60 |
36 41 58 59
|
syl2an3an |
|
61 |
57 60
|
mpand |
|
62 |
61
|
imim1d |
|
63 |
28
|
ad2antrr |
|
64 |
|
simprl |
|
65 |
63 64
|
ffvelrnd |
|
66 |
10
|
ad2antrr |
|
67 |
9
|
ad2antrr |
|
68 |
64 67
|
expcld |
|
69 |
66 68
|
mulcld |
|
70 |
65 69
|
subcld |
|
71 |
70
|
abscld |
|
72 |
69
|
abscld |
|
73 |
72
|
rehalfcld |
|
74 |
71 73 72
|
ltsub2d |
|
75 |
66 68
|
absmuld |
|
76 |
64 67
|
absexpd |
|
77 |
76
|
oveq2d |
|
78 |
75 77
|
eqtrd |
|
79 |
78
|
oveq1d |
|
80 |
66
|
abscld |
|
81 |
80
|
recnd |
|
82 |
58
|
ad2antrl |
|
83 |
82 67
|
reexpcld |
|
84 |
83
|
recnd |
|
85 |
|
2cnd |
|
86 |
|
2ne0 |
|
87 |
86
|
a1i |
|
88 |
81 84 85 87
|
div23d |
|
89 |
79 88
|
eqtrd |
|
90 |
89
|
breq2d |
|
91 |
72
|
recnd |
|
92 |
91
|
2halvesd |
|
93 |
92
|
oveq1d |
|
94 |
73
|
recnd |
|
95 |
94 94
|
pncand |
|
96 |
93 95
|
eqtr3d |
|
97 |
96
|
breq1d |
|
98 |
74 90 97
|
3bitr3d |
|
99 |
69 65
|
subcld |
|
100 |
69 99
|
abs2difd |
|
101 |
69 65
|
abssubd |
|
102 |
101
|
oveq2d |
|
103 |
69 65
|
nncand |
|
104 |
103
|
fveq2d |
|
105 |
100 102 104
|
3brtr3d |
|
106 |
72 71
|
resubcld |
|
107 |
65
|
abscld |
|
108 |
|
ltletr |
|
109 |
73 106 107 108
|
syl3anc |
|
110 |
105 109
|
mpan2d |
|
111 |
98 110
|
sylbid |
|
112 |
32
|
ad2antrr |
|
113 |
22
|
ad2antrr |
|
114 |
113
|
rpred |
|
115 |
114 82
|
remulcld |
|
116 |
89 73
|
eqeltrrd |
|
117 |
35
|
adantr |
|
118 |
41
|
adantr |
|
119 |
|
max2 |
|
120 |
39 35 119
|
syl2anc |
|
121 |
120 5
|
breqtrrdi |
|
122 |
121
|
adantr |
|
123 |
|
simprr |
|
124 |
117 118 82 122 123
|
lelttrd |
|
125 |
6 124
|
eqbrtrrid |
|
126 |
112 82 113
|
ltdivmuld |
|
127 |
125 126
|
mpbid |
|
128 |
82
|
recnd |
|
129 |
128
|
exp1d |
|
130 |
|
1red |
|
131 |
51
|
adantr |
|
132 |
130 118 82 131 123
|
lelttrd |
|
133 |
130 82 132
|
ltled |
|
134 |
4
|
ad2antrr |
|
135 |
|
nnuz |
|
136 |
134 135
|
eleqtrdi |
|
137 |
82 133 136
|
leexp2ad |
|
138 |
129 137
|
eqbrtrrd |
|
139 |
82 83 113
|
lemul2d |
|
140 |
138 139
|
mpbid |
|
141 |
112 115 116 127 140
|
ltletrd |
|
142 |
141 89
|
breqtrrd |
|
143 |
|
lttr |
|
144 |
112 73 107 143
|
syl3anc |
|
145 |
142 144
|
mpand |
|
146 |
111 145
|
syld |
|
147 |
146
|
expr |
|
148 |
147
|
a2d |
|
149 |
62 148
|
syld |
|
150 |
149
|
ralimdva |
|
151 |
|
breq1 |
|
152 |
151
|
rspceaimv |
|
153 |
53 150 152
|
syl6an |
|
154 |
153
|
rexlimdva |
|
155 |
26 154
|
mpd |
|