Metamath Proof Explorer


Theorem ftalem4

Description: Lemma for fta : Closure of the auxiliary variables for ftalem5 . (Contributed by Mario Carneiro, 20-Sep-2014) (Revised by AV, 28-Sep-2020)

Ref Expression
Hypotheses ftalem.1 A = coeff F
ftalem.2 N = deg F
ftalem.3 φ F Poly S
ftalem.4 φ N
ftalem4.5 φ F 0 0
ftalem4.6 K = sup n | A n 0 <
ftalem4.7 T = F 0 A K 1 K
ftalem4.8 U = F 0 k = K + 1 N A k T k + 1
ftalem4.9 X = if 1 U 1 U
Assertion ftalem4 φ K A K 0 T U + X +

Proof

Step Hyp Ref Expression
1 ftalem.1 A = coeff F
2 ftalem.2 N = deg F
3 ftalem.3 φ F Poly S
4 ftalem.4 φ N
5 ftalem4.5 φ F 0 0
6 ftalem4.6 K = sup n | A n 0 <
7 ftalem4.7 T = F 0 A K 1 K
8 ftalem4.8 U = F 0 k = K + 1 N A k T k + 1
9 ftalem4.9 X = if 1 U 1 U
10 ssrab2 n | A n 0
11 nnuz = 1
12 10 11 sseqtri n | A n 0 1
13 fveq2 n = N A n = A N
14 13 neeq1d n = N A n 0 A N 0
15 4 nnne0d φ N 0
16 2 1 dgreq0 F Poly S F = 0 𝑝 A N = 0
17 3 16 syl φ F = 0 𝑝 A N = 0
18 fveq2 F = 0 𝑝 deg F = deg 0 𝑝
19 dgr0 deg 0 𝑝 = 0
20 18 19 eqtrdi F = 0 𝑝 deg F = 0
21 2 20 syl5eq F = 0 𝑝 N = 0
22 17 21 syl6bir φ A N = 0 N = 0
23 22 necon3d φ N 0 A N 0
24 15 23 mpd φ A N 0
25 14 4 24 elrabd φ N n | A n 0
26 25 ne0d φ n | A n 0
27 infssuzcl n | A n 0 1 n | A n 0 sup n | A n 0 < n | A n 0
28 12 26 27 sylancr φ sup n | A n 0 < n | A n 0
29 6 28 eqeltrid φ K n | A n 0
30 fveq2 n = K A n = A K
31 30 neeq1d n = K A n 0 A K 0
32 31 elrab K n | A n 0 K A K 0
33 29 32 sylib φ K A K 0
34 plyf F Poly S F :
35 3 34 syl φ F :
36 0cn 0
37 ffvelrn F : 0 F 0
38 35 36 37 sylancl φ F 0
39 1 coef3 F Poly S A : 0
40 3 39 syl φ A : 0
41 33 simpld φ K
42 41 nnnn0d φ K 0
43 40 42 ffvelrnd φ A K
44 33 simprd φ A K 0
45 38 43 44 divcld φ F 0 A K
46 45 negcld φ F 0 A K
47 41 nnrecred φ 1 K
48 47 recnd φ 1 K
49 46 48 cxpcld φ F 0 A K 1 K
50 7 49 eqeltrid φ T
51 38 5 absrpcld φ F 0 +
52 fzfid φ K + 1 N Fin
53 peano2nn0 K 0 K + 1 0
54 42 53 syl φ K + 1 0
55 elfzuz k K + 1 N k K + 1
56 eluznn0 K + 1 0 k K + 1 k 0
57 54 55 56 syl2an φ k K + 1 N k 0
58 40 ffvelrnda φ k 0 A k
59 57 58 syldan φ k K + 1 N A k
60 expcl T k 0 T k
61 50 57 60 syl2an2r φ k K + 1 N T k
62 59 61 mulcld φ k K + 1 N A k T k
63 62 abscld φ k K + 1 N A k T k
64 52 63 fsumrecl φ k = K + 1 N A k T k
65 62 absge0d φ k K + 1 N 0 A k T k
66 52 63 65 fsumge0 φ 0 k = K + 1 N A k T k
67 64 66 ge0p1rpd φ k = K + 1 N A k T k + 1 +
68 51 67 rpdivcld φ F 0 k = K + 1 N A k T k + 1 +
69 8 68 eqeltrid φ U +
70 1rp 1 +
71 ifcl 1 + U + if 1 U 1 U +
72 70 69 71 sylancr φ if 1 U 1 U +
73 9 72 eqeltrid φ X +
74 50 69 73 3jca φ T U + X +
75 33 74 jca φ K A K 0 T U + X +