Step |
Hyp |
Ref |
Expression |
1 |
|
ftalem.1 |
|
2 |
|
ftalem.2 |
|
3 |
|
ftalem.3 |
|
4 |
|
ftalem.4 |
|
5 |
|
ftalem7.5 |
|
6 |
|
ftalem7.6 |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
simpr |
|
10 |
5
|
adantr |
|
11 |
9 10
|
addcld |
|
12 |
|
cnex |
|
13 |
12
|
a1i |
|
14 |
5
|
negcld |
|
15 |
14
|
adantr |
|
16 |
|
df-idp |
|
17 |
|
mptresid |
|
18 |
16 17
|
eqtri |
|
19 |
18
|
a1i |
|
20 |
|
fconstmpt |
|
21 |
20
|
a1i |
|
22 |
13 9 15 19 21
|
offval2 |
|
23 |
|
id |
|
24 |
|
subneg |
|
25 |
23 5 24
|
syl2anr |
|
26 |
25
|
mpteq2dva |
|
27 |
22 26
|
eqtrd |
|
28 |
|
plyf |
|
29 |
3 28
|
syl |
|
30 |
29
|
feqmptd |
|
31 |
|
fveq2 |
|
32 |
11 27 30 31
|
fmptco |
|
33 |
|
plyssc |
|
34 |
33 3
|
sselid |
|
35 |
|
eqid |
|
36 |
35
|
plyremlem |
|
37 |
14 36
|
syl |
|
38 |
37
|
simp1d |
|
39 |
|
addcl |
|
40 |
39
|
adantl |
|
41 |
|
mulcl |
|
42 |
41
|
adantl |
|
43 |
34 38 40 42
|
plyco |
|
44 |
32 43
|
eqeltrrd |
|
45 |
32
|
fveq2d |
|
46 |
|
eqid |
|
47 |
2 46 34 38
|
dgrco |
|
48 |
37
|
simp2d |
|
49 |
|
1nn |
|
50 |
48 49
|
eqeltrdi |
|
51 |
4 50
|
nnmulcld |
|
52 |
47 51
|
eqeltrd |
|
53 |
45 52
|
eqeltrrd |
|
54 |
|
0cn |
|
55 |
|
fvoveq1 |
|
56 |
|
eqid |
|
57 |
|
fvex |
|
58 |
55 56 57
|
fvmpt |
|
59 |
54 58
|
ax-mp |
|
60 |
5
|
addid2d |
|
61 |
60
|
fveq2d |
|
62 |
59 61
|
syl5eq |
|
63 |
62 6
|
eqnetrd |
|
64 |
7 8 44 53 63
|
ftalem6 |
|
65 |
|
id |
|
66 |
|
addcl |
|
67 |
65 5 66
|
syl2anr |
|
68 |
|
fvoveq1 |
|
69 |
|
fvex |
|
70 |
68 56 69
|
fvmpt |
|
71 |
70
|
adantl |
|
72 |
71
|
fveq2d |
|
73 |
62
|
adantr |
|
74 |
73
|
fveq2d |
|
75 |
72 74
|
breq12d |
|
76 |
29
|
adantr |
|
77 |
76 67
|
ffvelrnd |
|
78 |
77
|
abscld |
|
79 |
29 5
|
ffvelrnd |
|
80 |
79
|
abscld |
|
81 |
80
|
adantr |
|
82 |
78 81
|
ltnled |
|
83 |
75 82
|
bitrd |
|
84 |
83
|
biimpd |
|
85 |
|
2fveq3 |
|
86 |
85
|
breq2d |
|
87 |
86
|
notbid |
|
88 |
87
|
rspcev |
|
89 |
67 84 88
|
syl6an |
|
90 |
89
|
rexlimdva |
|
91 |
64 90
|
mpd |
|
92 |
|
rexnal |
|
93 |
91 92
|
sylib |
|