Step |
Hyp |
Ref |
Expression |
1 |
|
ftc1.g |
|
2 |
|
ftc1.a |
|
3 |
|
ftc1.b |
|
4 |
|
ftc1.le |
|
5 |
|
ftc1.s |
|
6 |
|
ftc1.d |
|
7 |
|
ftc1.i |
|
8 |
|
ftc1.c |
|
9 |
|
ftc1.f |
|
10 |
|
ftc1.j |
|
11 |
|
ftc1.k |
|
12 |
|
ftc1.l |
|
13 |
12
|
tgioo2 |
|
14 |
10 13
|
eqtr4i |
|
15 |
|
retop |
|
16 |
14 15
|
eqeltri |
|
17 |
16
|
a1i |
|
18 |
|
iccssre |
|
19 |
2 3 18
|
syl2anc |
|
20 |
|
iooretop |
|
21 |
20 14
|
eleqtrri |
|
22 |
21
|
a1i |
|
23 |
|
ioossicc |
|
24 |
23
|
a1i |
|
25 |
|
uniretop |
|
26 |
14
|
unieqi |
|
27 |
25 26
|
eqtr4i |
|
28 |
27
|
ssntr |
|
29 |
17 19 22 24 28
|
syl22anc |
|
30 |
29 8
|
sseldd |
|
31 |
|
eqid |
|
32 |
1 2 3 4 5 6 7 8 9 10 11 12 31
|
ftc1lem6 |
|
33 |
|
ax-resscn |
|
34 |
33
|
a1i |
|
35 |
1 2 3 4 5 6 7 8 9 10 11 12
|
ftc1lem3 |
|
36 |
1 2 3 4 5 6 7 35
|
ftc1lem2 |
|
37 |
10 12 31 34 36 19
|
eldv |
|
38 |
30 32 37
|
mpbir2and |
|