Metamath Proof Explorer


Theorem ftc1cn

Description: Strengthen the assumptions of ftc1 to when the function F is continuous on the entire interval ( A , B ) ; in this case we can calculate _D G exactly. (Contributed by Mario Carneiro, 1-Sep-2014)

Ref Expression
Hypotheses ftc1cn.g G = x A B A x F t dt
ftc1cn.a φ A
ftc1cn.b φ B
ftc1cn.le φ A B
ftc1cn.f φ F : A B cn
ftc1cn.i φ F 𝐿 1
Assertion ftc1cn φ D G = F

Proof

Step Hyp Ref Expression
1 ftc1cn.g G = x A B A x F t dt
2 ftc1cn.a φ A
3 ftc1cn.b φ B
4 ftc1cn.le φ A B
5 ftc1cn.f φ F : A B cn
6 ftc1cn.i φ F 𝐿 1
7 dvf G : dom G
8 7 a1i φ G : dom G
9 8 ffund φ Fun G
10 ax-resscn
11 10 a1i φ
12 ssidd φ A B A B
13 ioossre A B
14 13 a1i φ A B
15 cncff F : A B cn F : A B
16 5 15 syl φ F : A B
17 1 2 3 4 12 14 6 16 ftc1lem2 φ G : A B
18 iccssre A B A B
19 2 3 18 syl2anc φ A B
20 eqid TopOpen fld = TopOpen fld
21 20 tgioo2 topGen ran . = TopOpen fld 𝑡
22 11 17 19 21 20 dvbssntr φ dom G int topGen ran . A B
23 iccntr A B int topGen ran . A B = A B
24 2 3 23 syl2anc φ int topGen ran . A B = A B
25 22 24 sseqtrd φ dom G A B
26 2 adantr φ y A B A
27 3 adantr φ y A B B
28 4 adantr φ y A B A B
29 ssidd φ y A B A B A B
30 13 a1i φ y A B A B
31 6 adantr φ y A B F 𝐿 1
32 simpr φ y A B y A B
33 13 10 sstri A B
34 ssid
35 eqid TopOpen fld 𝑡 A B = TopOpen fld 𝑡 A B
36 20 cnfldtopon TopOpen fld TopOn
37 36 toponrestid TopOpen fld = TopOpen fld 𝑡
38 20 35 37 cncfcn A B A B cn = TopOpen fld 𝑡 A B Cn TopOpen fld
39 33 34 38 mp2an A B cn = TopOpen fld 𝑡 A B Cn TopOpen fld
40 5 39 eleqtrdi φ F TopOpen fld 𝑡 A B Cn TopOpen fld
41 40 adantr φ y A B F TopOpen fld 𝑡 A B Cn TopOpen fld
42 33 a1i φ A B
43 resttopon TopOpen fld TopOn A B TopOpen fld 𝑡 A B TopOn A B
44 36 42 43 sylancr φ TopOpen fld 𝑡 A B TopOn A B
45 toponuni TopOpen fld 𝑡 A B TopOn A B A B = TopOpen fld 𝑡 A B
46 44 45 syl φ A B = TopOpen fld 𝑡 A B
47 46 eleq2d φ y A B y TopOpen fld 𝑡 A B
48 47 biimpa φ y A B y TopOpen fld 𝑡 A B
49 eqid TopOpen fld 𝑡 A B = TopOpen fld 𝑡 A B
50 49 cncnpi F TopOpen fld 𝑡 A B Cn TopOpen fld y TopOpen fld 𝑡 A B F TopOpen fld 𝑡 A B CnP TopOpen fld y
51 41 48 50 syl2anc φ y A B F TopOpen fld 𝑡 A B CnP TopOpen fld y
52 1 26 27 28 29 30 31 32 51 21 35 20 ftc1 φ y A B y G F y
53 vex y V
54 fvex F y V
55 53 54 breldm y G F y y dom G
56 52 55 syl φ y A B y dom G
57 25 56 eqelssd φ dom G = A B
58 df-fn G Fn A B Fun G dom G = A B
59 9 57 58 sylanbrc φ G Fn A B
60 16 ffnd φ F Fn A B
61 9 adantr φ y A B Fun G
62 funbrfv Fun G y G F y G y = F y
63 61 52 62 sylc φ y A B G y = F y
64 59 60 63 eqfnfvd φ D G = F