Step |
Hyp |
Ref |
Expression |
1 |
|
ftc1cn.g |
|
2 |
|
ftc1cn.a |
|
3 |
|
ftc1cn.b |
|
4 |
|
ftc1cn.le |
|
5 |
|
ftc1cn.f |
|
6 |
|
ftc1cn.i |
|
7 |
|
dvf |
|
8 |
7
|
a1i |
|
9 |
8
|
ffund |
|
10 |
|
ax-resscn |
|
11 |
10
|
a1i |
|
12 |
|
ssidd |
|
13 |
|
ioossre |
|
14 |
13
|
a1i |
|
15 |
|
cncff |
|
16 |
5 15
|
syl |
|
17 |
1 2 3 4 12 14 6 16
|
ftc1lem2 |
|
18 |
|
iccssre |
|
19 |
2 3 18
|
syl2anc |
|
20 |
|
eqid |
|
21 |
20
|
tgioo2 |
|
22 |
11 17 19 21 20
|
dvbssntr |
|
23 |
|
iccntr |
|
24 |
2 3 23
|
syl2anc |
|
25 |
22 24
|
sseqtrd |
|
26 |
2
|
adantr |
|
27 |
3
|
adantr |
|
28 |
4
|
adantr |
|
29 |
|
ssidd |
|
30 |
13
|
a1i |
|
31 |
6
|
adantr |
|
32 |
|
simpr |
|
33 |
13 10
|
sstri |
|
34 |
|
ssid |
|
35 |
|
eqid |
|
36 |
20
|
cnfldtopon |
|
37 |
36
|
toponrestid |
|
38 |
20 35 37
|
cncfcn |
|
39 |
33 34 38
|
mp2an |
|
40 |
5 39
|
eleqtrdi |
|
41 |
40
|
adantr |
|
42 |
33
|
a1i |
|
43 |
|
resttopon |
|
44 |
36 42 43
|
sylancr |
|
45 |
|
toponuni |
|
46 |
44 45
|
syl |
|
47 |
46
|
eleq2d |
|
48 |
47
|
biimpa |
|
49 |
|
eqid |
|
50 |
49
|
cncnpi |
|
51 |
41 48 50
|
syl2anc |
|
52 |
1 26 27 28 29 30 31 32 51 21 35 20
|
ftc1 |
|
53 |
|
vex |
|
54 |
|
fvex |
|
55 |
53 54
|
breldm |
|
56 |
52 55
|
syl |
|
57 |
25 56
|
eqelssd |
|
58 |
|
df-fn |
|
59 |
9 57 58
|
sylanbrc |
|
60 |
16
|
ffnd |
|
61 |
9
|
adantr |
|
62 |
|
funbrfv |
|
63 |
61 52 62
|
sylc |
|
64 |
59 60 63
|
eqfnfvd |
|