| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ftc1.g |
|
| 2 |
|
ftc1.a |
|
| 3 |
|
ftc1.b |
|
| 4 |
|
ftc1.le |
|
| 5 |
|
ftc1.s |
|
| 6 |
|
ftc1.d |
|
| 7 |
|
ftc1.i |
|
| 8 |
|
ftc1a.f |
|
| 9 |
|
ftc1lem1.x |
|
| 10 |
|
ftc1lem1.y |
|
| 11 |
|
oveq2 |
|
| 12 |
|
itgeq1 |
|
| 13 |
11 12
|
syl |
|
| 14 |
|
itgex |
|
| 15 |
13 1 14
|
fvmpt |
|
| 16 |
10 15
|
syl |
|
| 17 |
16
|
adantr |
|
| 18 |
2
|
adantr |
|
| 19 |
|
iccssre |
|
| 20 |
2 3 19
|
syl2anc |
|
| 21 |
20 10
|
sseldd |
|
| 22 |
21
|
adantr |
|
| 23 |
20 9
|
sseldd |
|
| 24 |
23
|
adantr |
|
| 25 |
|
elicc2 |
|
| 26 |
2 3 25
|
syl2anc |
|
| 27 |
9 26
|
mpbid |
|
| 28 |
27
|
simp2d |
|
| 29 |
28
|
adantr |
|
| 30 |
|
simpr |
|
| 31 |
|
elicc2 |
|
| 32 |
2 21 31
|
syl2anc |
|
| 33 |
32
|
adantr |
|
| 34 |
24 29 30 33
|
mpbir3and |
|
| 35 |
3
|
rexrd |
|
| 36 |
|
elicc2 |
|
| 37 |
2 3 36
|
syl2anc |
|
| 38 |
10 37
|
mpbid |
|
| 39 |
38
|
simp3d |
|
| 40 |
|
iooss2 |
|
| 41 |
35 39 40
|
syl2anc |
|
| 42 |
41 5
|
sstrd |
|
| 43 |
42
|
adantr |
|
| 44 |
43
|
sselda |
|
| 45 |
8
|
ffvelcdmda |
|
| 46 |
45
|
adantlr |
|
| 47 |
44 46
|
syldan |
|
| 48 |
27
|
simp3d |
|
| 49 |
|
iooss2 |
|
| 50 |
35 48 49
|
syl2anc |
|
| 51 |
50 5
|
sstrd |
|
| 52 |
|
ioombl |
|
| 53 |
52
|
a1i |
|
| 54 |
|
fvexd |
|
| 55 |
8
|
feqmptd |
|
| 56 |
55 7
|
eqeltrrd |
|
| 57 |
51 53 54 56
|
iblss |
|
| 58 |
57
|
adantr |
|
| 59 |
2
|
rexrd |
|
| 60 |
|
iooss1 |
|
| 61 |
59 28 60
|
syl2anc |
|
| 62 |
61 41
|
sstrd |
|
| 63 |
62 5
|
sstrd |
|
| 64 |
|
ioombl |
|
| 65 |
64
|
a1i |
|
| 66 |
63 65 54 56
|
iblss |
|
| 67 |
66
|
adantr |
|
| 68 |
18 22 34 47 58 67
|
itgsplitioo |
|
| 69 |
17 68
|
eqtrd |
|
| 70 |
|
oveq2 |
|
| 71 |
|
itgeq1 |
|
| 72 |
70 71
|
syl |
|
| 73 |
|
itgex |
|
| 74 |
72 1 73
|
fvmpt |
|
| 75 |
9 74
|
syl |
|
| 76 |
75
|
adantr |
|
| 77 |
69 76
|
oveq12d |
|
| 78 |
|
fvexd |
|
| 79 |
78 57
|
itgcl |
|
| 80 |
63
|
sselda |
|
| 81 |
80 45
|
syldan |
|
| 82 |
81 66
|
itgcl |
|
| 83 |
79 82
|
pncan2d |
|
| 84 |
83
|
adantr |
|
| 85 |
77 84
|
eqtrd |
|