Step |
Hyp |
Ref |
Expression |
1 |
|
ftc1.g |
|
2 |
|
ftc1.a |
|
3 |
|
ftc1.b |
|
4 |
|
ftc1.le |
|
5 |
|
ftc1.s |
|
6 |
|
ftc1.d |
|
7 |
|
ftc1.i |
|
8 |
|
ftc1a.f |
|
9 |
|
ftc1lem1.x |
|
10 |
|
ftc1lem1.y |
|
11 |
|
oveq2 |
|
12 |
|
itgeq1 |
|
13 |
11 12
|
syl |
|
14 |
|
itgex |
|
15 |
13 1 14
|
fvmpt |
|
16 |
10 15
|
syl |
|
17 |
16
|
adantr |
|
18 |
2
|
adantr |
|
19 |
|
iccssre |
|
20 |
2 3 19
|
syl2anc |
|
21 |
20 10
|
sseldd |
|
22 |
21
|
adantr |
|
23 |
20 9
|
sseldd |
|
24 |
23
|
adantr |
|
25 |
|
elicc2 |
|
26 |
2 3 25
|
syl2anc |
|
27 |
9 26
|
mpbid |
|
28 |
27
|
simp2d |
|
29 |
28
|
adantr |
|
30 |
|
simpr |
|
31 |
|
elicc2 |
|
32 |
2 21 31
|
syl2anc |
|
33 |
32
|
adantr |
|
34 |
24 29 30 33
|
mpbir3and |
|
35 |
3
|
rexrd |
|
36 |
|
elicc2 |
|
37 |
2 3 36
|
syl2anc |
|
38 |
10 37
|
mpbid |
|
39 |
38
|
simp3d |
|
40 |
|
iooss2 |
|
41 |
35 39 40
|
syl2anc |
|
42 |
41 5
|
sstrd |
|
43 |
42
|
adantr |
|
44 |
43
|
sselda |
|
45 |
8
|
ffvelrnda |
|
46 |
45
|
adantlr |
|
47 |
44 46
|
syldan |
|
48 |
27
|
simp3d |
|
49 |
|
iooss2 |
|
50 |
35 48 49
|
syl2anc |
|
51 |
50 5
|
sstrd |
|
52 |
|
ioombl |
|
53 |
52
|
a1i |
|
54 |
|
fvexd |
|
55 |
8
|
feqmptd |
|
56 |
55 7
|
eqeltrrd |
|
57 |
51 53 54 56
|
iblss |
|
58 |
57
|
adantr |
|
59 |
2
|
rexrd |
|
60 |
|
iooss1 |
|
61 |
59 28 60
|
syl2anc |
|
62 |
61 41
|
sstrd |
|
63 |
62 5
|
sstrd |
|
64 |
|
ioombl |
|
65 |
64
|
a1i |
|
66 |
63 65 54 56
|
iblss |
|
67 |
66
|
adantr |
|
68 |
18 22 34 47 58 67
|
itgsplitioo |
|
69 |
17 68
|
eqtrd |
|
70 |
|
oveq2 |
|
71 |
|
itgeq1 |
|
72 |
70 71
|
syl |
|
73 |
|
itgex |
|
74 |
72 1 73
|
fvmpt |
|
75 |
9 74
|
syl |
|
76 |
75
|
adantr |
|
77 |
69 76
|
oveq12d |
|
78 |
|
fvexd |
|
79 |
78 57
|
itgcl |
|
80 |
63
|
sselda |
|
81 |
80 45
|
syldan |
|
82 |
81 66
|
itgcl |
|
83 |
79 82
|
pncan2d |
|
84 |
83
|
adantr |
|
85 |
77 84
|
eqtrd |
|