Metamath Proof Explorer


Theorem ftc1lem2

Description: Lemma for ftc1 . (Contributed by Mario Carneiro, 12-Aug-2014)

Ref Expression
Hypotheses ftc1.g G = x A B A x F t dt
ftc1.a φ A
ftc1.b φ B
ftc1.le φ A B
ftc1.s φ A B D
ftc1.d φ D
ftc1.i φ F 𝐿 1
ftc1a.f φ F : D
Assertion ftc1lem2 φ G : A B

Proof

Step Hyp Ref Expression
1 ftc1.g G = x A B A x F t dt
2 ftc1.a φ A
3 ftc1.b φ B
4 ftc1.le φ A B
5 ftc1.s φ A B D
6 ftc1.d φ D
7 ftc1.i φ F 𝐿 1
8 ftc1a.f φ F : D
9 fvexd φ x A B t A x F t V
10 3 adantr φ x A B B
11 10 rexrd φ x A B B *
12 elicc2 A B x A B x A x x B
13 2 3 12 syl2anc φ x A B x A x x B
14 13 biimpa φ x A B x A x x B
15 14 simp3d φ x A B x B
16 iooss2 B * x B A x A B
17 11 15 16 syl2anc φ x A B A x A B
18 5 adantr φ x A B A B D
19 17 18 sstrd φ x A B A x D
20 ioombl A x dom vol
21 20 a1i φ x A B A x dom vol
22 fvexd φ x A B t D F t V
23 8 feqmptd φ F = t D F t
24 23 7 eqeltrrd φ t D F t 𝐿 1
25 24 adantr φ x A B t D F t 𝐿 1
26 19 21 22 25 iblss φ x A B t A x F t 𝐿 1
27 9 26 itgcl φ x A B A x F t dt
28 27 1 fmptd φ G : A B