| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ftc1.g |  | 
						
							| 2 |  | ftc1.a |  | 
						
							| 3 |  | ftc1.b |  | 
						
							| 4 |  | ftc1.le |  | 
						
							| 5 |  | ftc1.s |  | 
						
							| 6 |  | ftc1.d |  | 
						
							| 7 |  | ftc1.i |  | 
						
							| 8 |  | ftc1.c |  | 
						
							| 9 |  | ftc1.f |  | 
						
							| 10 |  | ftc1.j |  | 
						
							| 11 |  | ftc1.k |  | 
						
							| 12 |  | ftc1.l |  | 
						
							| 13 |  | ftc1.h |  | 
						
							| 14 |  | ftc1.e |  | 
						
							| 15 |  | ftc1.r |  | 
						
							| 16 |  | ftc1.fc |  | 
						
							| 17 |  | ftc1.x1 |  | 
						
							| 18 |  | ftc1.x2 |  | 
						
							| 19 |  | iccssre |  | 
						
							| 20 | 2 3 19 | syl2anc |  | 
						
							| 21 | 20 17 | sseldd |  | 
						
							| 22 |  | ioossicc |  | 
						
							| 23 | 22 8 | sselid |  | 
						
							| 24 | 20 23 | sseldd |  | 
						
							| 25 | 21 24 | lttri2d |  | 
						
							| 26 | 25 | biimpa |  | 
						
							| 27 | 17 | adantr |  | 
						
							| 28 | 21 | adantr |  | 
						
							| 29 |  | simpr |  | 
						
							| 30 | 28 29 | ltned |  | 
						
							| 31 |  | eldifsn |  | 
						
							| 32 | 27 30 31 | sylanbrc |  | 
						
							| 33 |  | fveq2 |  | 
						
							| 34 | 33 | oveq1d |  | 
						
							| 35 |  | oveq1 |  | 
						
							| 36 | 34 35 | oveq12d |  | 
						
							| 37 |  | ovex |  | 
						
							| 38 | 36 13 37 | fvmpt |  | 
						
							| 39 | 32 38 | syl |  | 
						
							| 40 | 1 2 3 4 5 6 7 8 9 10 11 12 | ftc1lem3 |  | 
						
							| 41 | 1 2 3 4 5 6 7 40 | ftc1lem2 |  | 
						
							| 42 | 41 17 | ffvelcdmd |  | 
						
							| 43 | 41 23 | ffvelcdmd |  | 
						
							| 44 | 42 43 | subcld |  | 
						
							| 45 | 44 | adantr |  | 
						
							| 46 | 21 | recnd |  | 
						
							| 47 | 24 | recnd |  | 
						
							| 48 | 46 47 | subcld |  | 
						
							| 49 | 48 | adantr |  | 
						
							| 50 | 46 47 | subeq0ad |  | 
						
							| 51 | 50 | necon3bid |  | 
						
							| 52 | 51 | biimpar |  | 
						
							| 53 | 30 52 | syldan |  | 
						
							| 54 | 45 49 53 | div2negd |  | 
						
							| 55 | 42 43 | negsubdi2d |  | 
						
							| 56 | 46 47 | negsubdi2d |  | 
						
							| 57 | 55 56 | oveq12d |  | 
						
							| 58 | 57 | adantr |  | 
						
							| 59 | 39 54 58 | 3eqtr2d |  | 
						
							| 60 | 59 | fvoveq1d |  | 
						
							| 61 | 47 | subidd |  | 
						
							| 62 | 61 | abs00bd |  | 
						
							| 63 | 15 | rpgt0d |  | 
						
							| 64 | 62 63 | eqbrtrd |  | 
						
							| 65 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 23 64 | ftc1lem4 |  | 
						
							| 66 | 60 65 | eqbrtrd |  | 
						
							| 67 | 17 | adantr |  | 
						
							| 68 | 24 | adantr |  | 
						
							| 69 |  | simpr |  | 
						
							| 70 | 68 69 | gtned |  | 
						
							| 71 | 67 70 31 | sylanbrc |  | 
						
							| 72 | 71 38 | syl |  | 
						
							| 73 | 72 | fvoveq1d |  | 
						
							| 74 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 23 64 17 18 | ftc1lem4 |  | 
						
							| 75 | 73 74 | eqbrtrd |  | 
						
							| 76 | 66 75 | jaodan |  | 
						
							| 77 | 26 76 | syldan |  |