Step |
Hyp |
Ref |
Expression |
1 |
|
ftc1.g |
|
2 |
|
ftc1.a |
|
3 |
|
ftc1.b |
|
4 |
|
ftc1.le |
|
5 |
|
ftc1.s |
|
6 |
|
ftc1.d |
|
7 |
|
ftc1.i |
|
8 |
|
ftc1.c |
|
9 |
|
ftc1.f |
|
10 |
|
ftc1.j |
|
11 |
|
ftc1.k |
|
12 |
|
ftc1.l |
|
13 |
|
ftc1.h |
|
14 |
|
ftc1.e |
|
15 |
|
ftc1.r |
|
16 |
|
ftc1.fc |
|
17 |
|
ftc1.x1 |
|
18 |
|
ftc1.x2 |
|
19 |
|
iccssre |
|
20 |
2 3 19
|
syl2anc |
|
21 |
20 17
|
sseldd |
|
22 |
|
ioossicc |
|
23 |
22 8
|
sselid |
|
24 |
20 23
|
sseldd |
|
25 |
21 24
|
lttri2d |
|
26 |
25
|
biimpa |
|
27 |
17
|
adantr |
|
28 |
21
|
adantr |
|
29 |
|
simpr |
|
30 |
28 29
|
ltned |
|
31 |
|
eldifsn |
|
32 |
27 30 31
|
sylanbrc |
|
33 |
|
fveq2 |
|
34 |
33
|
oveq1d |
|
35 |
|
oveq1 |
|
36 |
34 35
|
oveq12d |
|
37 |
|
ovex |
|
38 |
36 13 37
|
fvmpt |
|
39 |
32 38
|
syl |
|
40 |
1 2 3 4 5 6 7 8 9 10 11 12
|
ftc1lem3 |
|
41 |
1 2 3 4 5 6 7 40
|
ftc1lem2 |
|
42 |
41 17
|
ffvelrnd |
|
43 |
41 23
|
ffvelrnd |
|
44 |
42 43
|
subcld |
|
45 |
44
|
adantr |
|
46 |
21
|
recnd |
|
47 |
24
|
recnd |
|
48 |
46 47
|
subcld |
|
49 |
48
|
adantr |
|
50 |
46 47
|
subeq0ad |
|
51 |
50
|
necon3bid |
|
52 |
51
|
biimpar |
|
53 |
30 52
|
syldan |
|
54 |
45 49 53
|
div2negd |
|
55 |
42 43
|
negsubdi2d |
|
56 |
46 47
|
negsubdi2d |
|
57 |
55 56
|
oveq12d |
|
58 |
57
|
adantr |
|
59 |
39 54 58
|
3eqtr2d |
|
60 |
59
|
fvoveq1d |
|
61 |
47
|
subidd |
|
62 |
61
|
abs00bd |
|
63 |
15
|
rpgt0d |
|
64 |
62 63
|
eqbrtrd |
|
65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 23 64
|
ftc1lem4 |
|
66 |
60 65
|
eqbrtrd |
|
67 |
17
|
adantr |
|
68 |
24
|
adantr |
|
69 |
|
simpr |
|
70 |
68 69
|
gtned |
|
71 |
67 70 31
|
sylanbrc |
|
72 |
71 38
|
syl |
|
73 |
72
|
fvoveq1d |
|
74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 23 64 17 18
|
ftc1lem4 |
|
75 |
73 74
|
eqbrtrd |
|
76 |
66 75
|
jaodan |
|
77 |
26 76
|
syldan |
|