| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ftc1.g |  | 
						
							| 2 |  | ftc1.a |  | 
						
							| 3 |  | ftc1.b |  | 
						
							| 4 |  | ftc1.le |  | 
						
							| 5 |  | ftc1.s |  | 
						
							| 6 |  | ftc1.d |  | 
						
							| 7 |  | ftc1.i |  | 
						
							| 8 |  | ftc1.c |  | 
						
							| 9 |  | ftc1.f |  | 
						
							| 10 |  | ftc1.j |  | 
						
							| 11 |  | ftc1.k |  | 
						
							| 12 |  | ftc1.l |  | 
						
							| 13 |  | ftc1.h |  | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 10 11 12 | ftc1lem3 |  | 
						
							| 15 | 5 8 | sseldd |  | 
						
							| 16 | 14 15 | ffvelcdmd |  | 
						
							| 17 |  | cnxmet |  | 
						
							| 18 |  | ax-resscn |  | 
						
							| 19 | 6 18 | sstrdi |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 |  | xmetres2 |  | 
						
							| 22 | 17 20 21 | sylancr |  | 
						
							| 23 | 17 | a1i |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 | 12 | cnfldtopn |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 | 24 25 26 | metrest |  | 
						
							| 28 | 17 19 27 | sylancr |  | 
						
							| 29 | 11 28 | eqtrid |  | 
						
							| 30 | 29 | oveq1d |  | 
						
							| 31 | 30 | fveq1d |  | 
						
							| 32 | 9 31 | eleqtrd |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 |  | simpr |  | 
						
							| 35 | 26 25 | metcnpi2 |  | 
						
							| 36 | 22 23 33 34 35 | syl22anc |  | 
						
							| 37 |  | simpr |  | 
						
							| 38 | 15 | ad2antrr |  | 
						
							| 39 | 37 38 | ovresd |  | 
						
							| 40 | 19 | adantr |  | 
						
							| 41 | 40 | sselda |  | 
						
							| 42 |  | iccssre |  | 
						
							| 43 | 2 3 42 | syl2anc |  | 
						
							| 44 | 43 18 | sstrdi |  | 
						
							| 45 |  | ioossicc |  | 
						
							| 46 | 45 8 | sselid |  | 
						
							| 47 | 44 46 | sseldd |  | 
						
							| 48 | 47 | ad2antrr |  | 
						
							| 49 |  | eqid |  | 
						
							| 50 | 49 | cnmetdval |  | 
						
							| 51 | 41 48 50 | syl2anc |  | 
						
							| 52 | 39 51 | eqtrd |  | 
						
							| 53 | 52 | breq1d |  | 
						
							| 54 | 14 | adantr |  | 
						
							| 55 | 54 | ffvelcdmda |  | 
						
							| 56 | 16 | ad2antrr |  | 
						
							| 57 | 49 | cnmetdval |  | 
						
							| 58 | 55 56 57 | syl2anc |  | 
						
							| 59 | 58 | breq1d |  | 
						
							| 60 | 53 59 | imbi12d |  | 
						
							| 61 | 60 | ralbidva |  | 
						
							| 62 |  | simprll |  | 
						
							| 63 |  | eldifsni |  | 
						
							| 64 | 62 63 | syl |  | 
						
							| 65 | 2 | ad2antrr |  | 
						
							| 66 | 3 | ad2antrr |  | 
						
							| 67 | 4 | ad2antrr |  | 
						
							| 68 | 5 | ad2antrr |  | 
						
							| 69 | 6 | ad2antrr |  | 
						
							| 70 | 7 | ad2antrr |  | 
						
							| 71 | 8 | ad2antrr |  | 
						
							| 72 | 9 | ad2antrr |  | 
						
							| 73 |  | simplrl |  | 
						
							| 74 |  | simplrr |  | 
						
							| 75 |  | simprlr |  | 
						
							| 76 |  | fvoveq1 |  | 
						
							| 77 | 76 | breq1d |  | 
						
							| 78 | 77 | imbrov2fvoveq |  | 
						
							| 79 | 78 | rspccva |  | 
						
							| 80 | 75 79 | sylan |  | 
						
							| 81 | 62 | eldifad |  | 
						
							| 82 |  | simprr |  | 
						
							| 83 | 1 65 66 67 68 69 70 71 72 10 11 12 13 73 74 80 81 82 | ftc1lem5 |  | 
						
							| 84 | 64 83 | mpdan |  | 
						
							| 85 | 84 | expr |  | 
						
							| 86 | 85 | adantld |  | 
						
							| 87 | 86 | expr |  | 
						
							| 88 | 87 | ralrimdva |  | 
						
							| 89 | 61 88 | sylbid |  | 
						
							| 90 | 89 | anassrs |  | 
						
							| 91 | 90 | reximdva |  | 
						
							| 92 | 36 91 | mpd |  | 
						
							| 93 | 92 | ralrimiva |  | 
						
							| 94 | 1 2 3 4 5 6 7 14 | ftc1lem2 |  | 
						
							| 95 | 94 44 46 | dvlem |  | 
						
							| 96 | 95 13 | fmptd |  | 
						
							| 97 | 44 | ssdifssd |  | 
						
							| 98 | 96 97 47 | ellimc3 |  | 
						
							| 99 | 16 93 98 | mpbir2and |  |