Step |
Hyp |
Ref |
Expression |
1 |
|
ftc2ditg.x |
|
2 |
|
ftc2ditg.y |
|
3 |
|
ftc2ditg.a |
|
4 |
|
ftc2ditg.b |
|
5 |
|
ftc2ditg.c |
|
6 |
|
ftc2ditg.i |
|
7 |
|
ftc2ditg.f |
|
8 |
|
simpr |
|
9 |
8
|
ditgpos |
|
10 |
|
iccssre |
|
11 |
1 2 10
|
syl2anc |
|
12 |
11 3
|
sseldd |
|
13 |
12
|
adantr |
|
14 |
11 4
|
sseldd |
|
15 |
14
|
adantr |
|
16 |
|
ax-resscn |
|
17 |
16
|
a1i |
|
18 |
|
cncff |
|
19 |
7 18
|
syl |
|
20 |
19
|
adantr |
|
21 |
11
|
adantr |
|
22 |
|
iccssre |
|
23 |
12 14 22
|
syl2anc |
|
24 |
23
|
adantr |
|
25 |
|
eqid |
|
26 |
25
|
tgioo2 |
|
27 |
25 26
|
dvres |
|
28 |
17 20 21 24 27
|
syl22anc |
|
29 |
|
iccntr |
|
30 |
12 14 29
|
syl2anc |
|
31 |
30
|
adantr |
|
32 |
31
|
reseq2d |
|
33 |
28 32
|
eqtrd |
|
34 |
1
|
rexrd |
|
35 |
|
elicc2 |
|
36 |
1 2 35
|
syl2anc |
|
37 |
3 36
|
mpbid |
|
38 |
37
|
simp2d |
|
39 |
|
iooss1 |
|
40 |
34 38 39
|
syl2anc |
|
41 |
2
|
rexrd |
|
42 |
|
elicc2 |
|
43 |
1 2 42
|
syl2anc |
|
44 |
4 43
|
mpbid |
|
45 |
44
|
simp3d |
|
46 |
|
iooss2 |
|
47 |
41 45 46
|
syl2anc |
|
48 |
40 47
|
sstrd |
|
49 |
48
|
adantr |
|
50 |
5
|
adantr |
|
51 |
|
rescncf |
|
52 |
49 50 51
|
sylc |
|
53 |
33 52
|
eqeltrd |
|
54 |
|
cncff |
|
55 |
5 54
|
syl |
|
56 |
55
|
feqmptd |
|
57 |
56
|
adantr |
|
58 |
57
|
reseq1d |
|
59 |
49
|
resmptd |
|
60 |
58 59
|
eqtrd |
|
61 |
33 60
|
eqtrd |
|
62 |
|
ioombl |
|
63 |
62
|
a1i |
|
64 |
|
fvexd |
|
65 |
6
|
adantr |
|
66 |
57 65
|
eqeltrrd |
|
67 |
49 63 64 66
|
iblss |
|
68 |
61 67
|
eqeltrd |
|
69 |
|
iccss2 |
|
70 |
3 4 69
|
syl2anc |
|
71 |
|
rescncf |
|
72 |
70 7 71
|
sylc |
|
73 |
72
|
adantr |
|
74 |
13 15 8 53 68 73
|
ftc2 |
|
75 |
33
|
fveq1d |
|
76 |
|
fvres |
|
77 |
75 76
|
sylan9eq |
|
78 |
77
|
itgeq2dv |
|
79 |
13
|
rexrd |
|
80 |
15
|
rexrd |
|
81 |
|
ubicc2 |
|
82 |
|
lbicc2 |
|
83 |
|
fvres |
|
84 |
|
fvres |
|
85 |
83 84
|
oveqan12d |
|
86 |
81 82 85
|
syl2anc |
|
87 |
79 80 8 86
|
syl3anc |
|
88 |
74 78 87
|
3eqtr3d |
|
89 |
9 88
|
eqtrd |
|