Metamath Proof Explorer


Theorem fthepi

Description: A faithful functor reflects epimorphisms. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses fthmon.b B = Base C
fthmon.h H = Hom C
fthmon.f φ F C Faith D G
fthmon.x φ X B
fthmon.y φ Y B
fthmon.r φ R X H Y
fthepi.e E = Epi C
fthepi.p P = Epi D
fthepi.1 φ X G Y R F X P F Y
Assertion fthepi φ R X E Y

Proof

Step Hyp Ref Expression
1 fthmon.b B = Base C
2 fthmon.h H = Hom C
3 fthmon.f φ F C Faith D G
4 fthmon.x φ X B
5 fthmon.y φ Y B
6 fthmon.r φ R X H Y
7 fthepi.e E = Epi C
8 fthepi.p P = Epi D
9 fthepi.1 φ X G Y R F X P F Y
10 eqid oppCat C = oppCat C
11 10 1 oppcbas B = Base oppCat C
12 eqid Hom oppCat C = Hom oppCat C
13 eqid oppCat D = oppCat D
14 10 13 3 fthoppc φ F oppCat C Faith oppCat D tpos G
15 2 10 oppchom Y Hom oppCat C X = X H Y
16 6 15 eleqtrrdi φ R Y Hom oppCat C X
17 eqid Mono oppCat C = Mono oppCat C
18 eqid Mono oppCat D = Mono oppCat D
19 ovtpos Y tpos G X = X G Y
20 19 fveq1i Y tpos G X R = X G Y R
21 20 9 eqeltrid φ Y tpos G X R F X P F Y
22 fthfunc C Faith D C Func D
23 22 ssbri F C Faith D G F C Func D G
24 3 23 syl φ F C Func D G
25 df-br F C Func D G F G C Func D
26 24 25 sylib φ F G C Func D
27 funcrcl F G C Func D C Cat D Cat
28 26 27 syl φ C Cat D Cat
29 28 simprd φ D Cat
30 13 29 18 8 oppcmon φ F Y Mono oppCat D F X = F X P F Y
31 21 30 eleqtrrd φ Y tpos G X R F Y Mono oppCat D F X
32 11 12 14 5 4 16 17 18 31 fthmon φ R Y Mono oppCat C X
33 28 simpld φ C Cat
34 10 33 17 7 oppcmon φ Y Mono oppCat C X = X E Y
35 32 34 eleqtrd φ R X E Y