Metamath Proof Explorer


Theorem fthinv

Description: A faithful functor reflects inverses. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses fthsect.b B = Base C
fthsect.h H = Hom C
fthsect.f φ F C Faith D G
fthsect.x φ X B
fthsect.y φ Y B
fthsect.m φ M X H Y
fthsect.n φ N Y H X
fthinv.s I = Inv C
fthinv.t J = Inv D
Assertion fthinv φ M X I Y N X G Y M F X J F Y Y G X N

Proof

Step Hyp Ref Expression
1 fthsect.b B = Base C
2 fthsect.h H = Hom C
3 fthsect.f φ F C Faith D G
4 fthsect.x φ X B
5 fthsect.y φ Y B
6 fthsect.m φ M X H Y
7 fthsect.n φ N Y H X
8 fthinv.s I = Inv C
9 fthinv.t J = Inv D
10 eqid Sect C = Sect C
11 eqid Sect D = Sect D
12 1 2 3 4 5 6 7 10 11 fthsect φ M X Sect C Y N X G Y M F X Sect D F Y Y G X N
13 1 2 3 5 4 7 6 10 11 fthsect φ N Y Sect C X M Y G X N F Y Sect D F X X G Y M
14 12 13 anbi12d φ M X Sect C Y N N Y Sect C X M X G Y M F X Sect D F Y Y G X N Y G X N F Y Sect D F X X G Y M
15 fthfunc C Faith D C Func D
16 15 ssbri F C Faith D G F C Func D G
17 3 16 syl φ F C Func D G
18 df-br F C Func D G F G C Func D
19 17 18 sylib φ F G C Func D
20 funcrcl F G C Func D C Cat D Cat
21 19 20 syl φ C Cat D Cat
22 21 simpld φ C Cat
23 1 8 22 4 5 10 isinv φ M X I Y N M X Sect C Y N N Y Sect C X M
24 eqid Base D = Base D
25 21 simprd φ D Cat
26 1 24 17 funcf1 φ F : B Base D
27 26 4 ffvelrnd φ F X Base D
28 26 5 ffvelrnd φ F Y Base D
29 24 9 25 27 28 11 isinv φ X G Y M F X J F Y Y G X N X G Y M F X Sect D F Y Y G X N Y G X N F Y Sect D F X X G Y M
30 14 23 29 3bitr4d φ M X I Y N X G Y M F X J F Y Y G X N