Step |
Hyp |
Ref |
Expression |
1 |
|
fthmon.b |
|
2 |
|
fthmon.h |
|
3 |
|
fthmon.f |
|
4 |
|
fthmon.x |
|
5 |
|
fthmon.y |
|
6 |
|
fthmon.r |
|
7 |
|
fthmon.m |
|
8 |
|
fthmon.n |
|
9 |
|
fthmon.1 |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
fthfunc |
|
14 |
13
|
ssbri |
|
15 |
3 14
|
syl |
|
16 |
|
df-br |
|
17 |
15 16
|
sylib |
|
18 |
|
funcrcl |
|
19 |
17 18
|
syl |
|
20 |
19
|
simprd |
|
21 |
20
|
adantr |
|
22 |
15
|
adantr |
|
23 |
1 10 22
|
funcf1 |
|
24 |
4
|
adantr |
|
25 |
23 24
|
ffvelrnd |
|
26 |
5
|
adantr |
|
27 |
23 26
|
ffvelrnd |
|
28 |
|
simpr1 |
|
29 |
23 28
|
ffvelrnd |
|
30 |
9
|
adantr |
|
31 |
1 2 11 22 28 24
|
funcf2 |
|
32 |
|
simpr2 |
|
33 |
31 32
|
ffvelrnd |
|
34 |
|
simpr3 |
|
35 |
31 34
|
ffvelrnd |
|
36 |
10 11 12 8 21 25 27 29 30 33 35
|
moni |
|
37 |
|
eqid |
|
38 |
6
|
adantr |
|
39 |
1 2 37 12 22 28 24 26 32 38
|
funcco |
|
40 |
1 2 37 12 22 28 24 26 34 38
|
funcco |
|
41 |
39 40
|
eqeq12d |
|
42 |
3
|
adantr |
|
43 |
19
|
simpld |
|
44 |
43
|
adantr |
|
45 |
1 2 37 44 28 24 26 32 38
|
catcocl |
|
46 |
1 2 37 44 28 24 26 34 38
|
catcocl |
|
47 |
1 2 11 42 28 26 45 46
|
fthi |
|
48 |
41 47
|
bitr3d |
|
49 |
1 2 11 42 28 24 32 34
|
fthi |
|
50 |
36 48 49
|
3bitr3d |
|
51 |
50
|
biimpd |
|
52 |
51
|
ralrimivvva |
|
53 |
1 2 37 7 43 4 5
|
ismon2 |
|
54 |
6 52 53
|
mpbir2and |
|