Step |
Hyp |
Ref |
Expression |
1 |
|
fullpropd.1 |
|
2 |
|
fullpropd.2 |
|
3 |
|
fullpropd.3 |
|
4 |
|
fullpropd.4 |
|
5 |
|
fullpropd.a |
|
6 |
|
fullpropd.b |
|
7 |
|
fullpropd.c |
|
8 |
|
fullpropd.d |
|
9 |
|
relfth |
|
10 |
|
relfth |
|
11 |
1 2 3 4 5 6 7 8
|
funcpropd |
|
12 |
11
|
breqd |
|
13 |
1
|
homfeqbas |
|
14 |
13
|
raleqdv |
|
15 |
13 14
|
raleqbidv |
|
16 |
12 15
|
anbi12d |
|
17 |
|
eqid |
|
18 |
17
|
isfth |
|
19 |
|
eqid |
|
20 |
19
|
isfth |
|
21 |
16 18 20
|
3bitr4g |
|
22 |
9 10 21
|
eqbrrdiv |
|