Metamath Proof Explorer


Theorem fthres2

Description: A faithful functor into a restricted category is also a faithful functor into the whole category. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Assertion fthres2 R Subcat D C Faith D cat R C Faith D

Proof

Step Hyp Ref Expression
1 relfth Rel C Faith D cat R
2 1 a1i R Subcat D Rel C Faith D cat R
3 funcres2 R Subcat D C Func D cat R C Func D
4 3 ssbrd R Subcat D f C Func D cat R g f C Func D g
5 4 anim1d R Subcat D f C Func D cat R g x Base C y Base C Fun x g y -1 f C Func D g x Base C y Base C Fun x g y -1
6 eqid Base C = Base C
7 6 isfth f C Faith D cat R g f C Func D cat R g x Base C y Base C Fun x g y -1
8 6 isfth f C Faith D g f C Func D g x Base C y Base C Fun x g y -1
9 5 7 8 3imtr4g R Subcat D f C Faith D cat R g f C Faith D g
10 df-br f C Faith D cat R g f g C Faith D cat R
11 df-br f C Faith D g f g C Faith D
12 9 10 11 3imtr3g R Subcat D f g C Faith D cat R f g C Faith D
13 2 12 relssdv R Subcat D C Faith D cat R C Faith D